abideen's picture
Update README.md
d631c24 verified
metadata
license: apache-2.0
tags:
  - moe
  - frankenmoe
  - merge
  - mergekit
  - lazymergekit
  - mlabonne/AlphaMonarch-7B
  - Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0
base_model:
  - mlabonne/AlphaMonarch-7B
  - Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0
language:
  - en
library_name: transformers
model-index:
  - name: MonarchCoder-MoE-2x7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 70.99
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.99
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 71.25
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.66
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-MoE-2x7B
          name: Open LLM Leaderboard

MonarchCoder-MoE-2x7B

image/jpeg

MonarchCoder-MoE-2x7B is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

The main aim behind creating this model is to create a model that performs well in reasoning, conversation, and coding. AlphaMonarch performs amazing on reasoning and conversation tasks. Merging AlphaMonarch with a coding model yielded MonarchCoder-2x7B which performs better on OpenLLM, Nous, and HumanEval benchmark.

πŸ† Evaluation results

|             Metric              |MonarchCoder-Moe-2x7B||MonarchCoder-7B||AlphaMonarch|
|---------------------------------|---------------------|-----------------|------------|
|Avg.                             |       74.23         |      71.17      |   75.99    |
|HumanEval                        |       41.15         |      39.02      |   34.14    |
|HumanEval+                       |       29.87         |      31.70      |   29.26    |
|MBPP                             |       40.60         |       *         |     *      |
|AI2 Reasoning Challenge (25-Shot)|       70.99         |      68.52      |   73.04    |
|HellaSwag (10-Shot)              |       87.99         |      87.30      |   89.18    |
|MMLU (5-Shot)                    |       65.11         |      64.65      |   64.40    |
|TruthfulQA (0-shot)              |       71.25         |      61.21      |   77.91    |
|Winogrande (5-shot)              |       80.66         |      80.19     .|   84.69    |
|GSM8k (5-shot)           .       |       69.37         |      65.13      |   66.72    |       

🧩 Configuration

base_model: paulml/OGNO-7B
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: mlabonne/AlphaMonarch-7B
    positive_prompts:
    - "Mathematics"
    - "Logical Reasoning"
    - "Intelligent Conversations"
    - "Thoughtful Analysis"
    - "Biology"
    - "Medicine"
    - "Problem-solving Dialogue"
    - "Physics"
    - "Emotional intelligence"

    negative_prompts:
    - "History"
    - "Philosophy"
    - "Linguistics"
    - "Literature"
    - "Art and Art History"
    - "Music Theory and Composition"
    - "Performing Arts (Theater, Dance)"

  - source_model: Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0
    positive_prompts:
    - "Coding"
    - "Algorithm Design"
    - "Problem Solving"
    - "Software Development"
    - "Computer"
    - "Code Refactoring"
    - "Web development"
    - "Machine learning"
    negative_prompts:
    - "Education"
    - "Law"
    - "Theology and Religious Studies"
    - "Communication Studies"
    - "Business and Management"
    - "Agricultural Sciences"
    - "Nutrition and Food Science"
    - "Sports Science"

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "abideen/MonarchCoder-MoE-2x7B"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])