YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Fine-Tuned Darija Summarization Model

This is a fine-tuned version of Llama-3.1 for text summarization in Darija (Moroccan Arabic). The model was trained on a dataset consisting of news articles and corresponding headlines.

Usage

!pip install gradio
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("your_username/my-finetuned-darija-model")
tokenizer = AutoTokenizer.from_pretrained("your_username/my-finetuned-darija-model")

def summarize_text(article_content):
    """
    Fonction pour générer un résumé à partir du texte d'entrée.
    """
    # Preprocessing: remove unwanted characters (e.g., </)
    cleaned_article_content = article_content.replace('</', '').replace('>', '')

    # Formater le texte d'entrée avec les instructions
    input_text = f"""Below is an article written in Darija. Write a concise and accurate summary:

### Article:
{cleaned_article_content}
### Summary:
"""
    # Tokenisation et génération
    inputs = tokenizer([input_text], return_tensors="pt", truncation=True).to("cuda")
    outputs = model.generate(**inputs, max_new_tokens=50)

    # Décoder le résumé et nettoyer les tags inutiles
    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Nettoyer les tokens supplémentaires (</s> ou autres)
    summary = summary.replace('</s>', '').strip()

    # Ne retourner que la partie du résumé (pas les autres sections)
    if "### Summary:" in summary:
        summary = summary.split("### Summary:")[1].strip()

    return summary

# Interface Gradio
with gr.Blocks() as demo:
    gr.Markdown("## Résumé de texte en Darija")
    gr.Markdown(
        "Entrez le contenu de l'article en Darija dans la zone ci-dessous. "
        "Un résumé sera généré et affiché."
    )

    with gr.Row():
        input_box = gr.Textbox(
            label="Contenu de l'article",
            placeholder="Entrez uniquement le contenu de l'article ici...",
            lines=10
        )
        output_box = gr.Textbox(
            label="Résumé généré",
            placeholder="Le résumé apparaîtra ici...",
            lines=5
        )

    generate_button = gr.Button("Générer le résumé")
    generate_button.click(summarize_text, inputs=input_box, outputs=output_box)

# Lancer l'application
demo.launch()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.