PhoLexiContent-10304
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2676
- Accuracy: 0.9379
- F1: 0.9072
- Precision: 0.9100
- Recall: 0.9046
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.7189 | 2.7586 | 100 | 0.1735 | 0.9437 | 0.9157 | 0.9199 | 0.9116 |
0.178 | 5.5172 | 200 | 0.1864 | 0.9408 | 0.9099 | 0.9211 | 0.8998 |
0.0931 | 8.2759 | 300 | 0.2137 | 0.9418 | 0.9124 | 0.9182 | 0.9070 |
0.0931 | 11.0345 | 400 | 0.2234 | 0.9408 | 0.9129 | 0.9096 | 0.9163 |
0.0564 | 13.7931 | 500 | 0.2346 | 0.9370 | 0.9075 | 0.9030 | 0.9122 |
0.0334 | 16.5517 | 600 | 0.2652 | 0.9350 | 0.9037 | 0.9030 | 0.9044 |
0.0334 | 19.3103 | 700 | 0.2676 | 0.9379 | 0.9072 | 0.9100 | 0.9046 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
Model tree for ace-in-the-hole/PhoLexiContent-10304
Base model
vinai/phobert-base-v2