cita_test

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3031
  • Accuracy: 0.9183
  • F1: 0.9029
  • Precision: 0.9113
  • Recall: 0.8958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6745 2.1277 100 0.2197 0.926 0.9110 0.9256 0.8996
0.2806 4.2553 200 0.2333 0.9293 0.9140 0.9363 0.8979
0.2806 6.3830 300 0.2366 0.916 0.9027 0.8998 0.9058
0.1669 8.5106 400 0.2277 0.9283 0.9149 0.9229 0.9080
0.1669 10.6383 500 0.2593 0.922 0.9067 0.9183 0.8972
0.1132 12.7660 600 0.2683 0.9243 0.9099 0.9191 0.9022
0.1132 14.8936 700 0.2796 0.9203 0.9051 0.9148 0.8969
0.0818 17.0213 800 0.2948 0.9217 0.9064 0.9175 0.8973
0.0818 19.1489 900 0.3031 0.9183 0.9029 0.9113 0.8958

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ace-in-the-hole/cita_test

Finetuned
(200)
this model