cita_test
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3031
- Accuracy: 0.9183
- F1: 0.9029
- Precision: 0.9113
- Recall: 0.8958
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.6745 | 2.1277 | 100 | 0.2197 | 0.926 | 0.9110 | 0.9256 | 0.8996 |
0.2806 | 4.2553 | 200 | 0.2333 | 0.9293 | 0.9140 | 0.9363 | 0.8979 |
0.2806 | 6.3830 | 300 | 0.2366 | 0.916 | 0.9027 | 0.8998 | 0.9058 |
0.1669 | 8.5106 | 400 | 0.2277 | 0.9283 | 0.9149 | 0.9229 | 0.9080 |
0.1669 | 10.6383 | 500 | 0.2593 | 0.922 | 0.9067 | 0.9183 | 0.8972 |
0.1132 | 12.7660 | 600 | 0.2683 | 0.9243 | 0.9099 | 0.9191 | 0.9022 |
0.1132 | 14.8936 | 700 | 0.2796 | 0.9203 | 0.9051 | 0.9148 | 0.8969 |
0.0818 | 17.0213 | 800 | 0.2948 | 0.9217 | 0.9064 | 0.9175 | 0.8973 |
0.0818 | 19.1489 | 900 | 0.3031 | 0.9183 | 0.9029 | 0.9113 | 0.8958 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ace-in-the-hole/cita_test
Base model
vinai/phobert-base-v2