license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- xsum | |
metrics: | |
- rouge | |
base_model: google/flan-t5-base | |
model-index: | |
- name: flan-t5-base-xsum | |
results: | |
- task: | |
type: text2text-generation | |
name: Sequence-to-sequence Language Modeling | |
dataset: | |
name: xsum | |
type: xsum | |
config: default | |
split: test | |
args: default | |
metrics: | |
- type: rouge | |
value: 32.3503 | |
name: Rouge1 | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# flan-t5-base-xsum | |
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the xsum dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 2.0798 | |
- Rouge1: 32.3503 | |
- Rouge2: 10.8909 | |
- Rougel: 25.9346 | |
- Rougelsum: 25.9216 | |
- Gen Len: 18.8494 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 0.0005 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adafactor | |
- lr_scheduler_type: linear | |
- num_epochs: 5 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | |
| 2.335 | 1.0 | 1417 | 2.0823 | 31.3453 | 10.2077 | 25.0051 | 25.008 | 18.8259 | | |
| 1.8642 | 2.0 | 2834 | 2.0798 | 32.3503 | 10.8909 | 25.9346 | 25.9216 | 18.8494 | | |
| 1.5208 | 3.0 | 4251 | 2.1272 | 32.6743 | 11.3394 | 26.3776 | 26.3724 | 18.8435 | | |
| 1.2628 | 4.0 | 5668 | 2.2110 | 32.695 | 11.3273 | 26.3215 | 26.322 | 18.8306 | | |
| 1.0649 | 5.0 | 7085 | 2.3143 | 32.5287 | 11.3662 | 26.274 | 26.2741 | 18.8345 | | |
### Framework versions | |
- Transformers 4.26.1 | |
- Pytorch 1.13.1+cu116 | |
- Datasets 2.10.0 | |
- Tokenizers 0.13.2 | |