flan-t5-base-xsum / README.md
achimoraites's picture
Librarian Bot: Add base_model information to model (#1)
24203fc verified
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
base_model: google/flan-t5-base
model-index:
- name: flan-t5-base-xsum
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: xsum
type: xsum
config: default
split: test
args: default
metrics:
- type: rouge
value: 32.3503
name: Rouge1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-xsum
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0798
- Rouge1: 32.3503
- Rouge2: 10.8909
- Rougel: 25.9346
- Rougelsum: 25.9216
- Gen Len: 18.8494
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.335 | 1.0 | 1417 | 2.0823 | 31.3453 | 10.2077 | 25.0051 | 25.008 | 18.8259 |
| 1.8642 | 2.0 | 2834 | 2.0798 | 32.3503 | 10.8909 | 25.9346 | 25.9216 | 18.8494 |
| 1.5208 | 3.0 | 4251 | 2.1272 | 32.6743 | 11.3394 | 26.3776 | 26.3724 | 18.8435 |
| 1.2628 | 4.0 | 5668 | 2.2110 | 32.695 | 11.3273 | 26.3215 | 26.322 | 18.8306 |
| 1.0649 | 5.0 | 7085 | 2.3143 | 32.5287 | 11.3662 | 26.274 | 26.2741 | 18.8345 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2