distilbert-1k

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0986
  • Accuracy: 0.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0989 1.0 6000 1.0986 0.3333
1.0993 2.0 12000 1.0986 0.3333
1.0992 3.0 18000 1.0986 0.3333
1.0993 4.0 24000 1.0986 0.3333
1.0985 5.0 30000 1.0986 0.3333
1.0988 6.0 36000 1.0986 0.3333
1.0993 7.0 42000 1.0986 0.3333
1.0983 8.0 48000 1.0986 0.3333
1.0983 9.0 54000 1.0986 0.3333
1.0982 10.0 60000 1.0986 0.3333
1.0986 11.0 66000 1.0986 0.3333
1.0985 12.0 72000 1.0986 0.3333
1.0983 13.0 78000 1.0986 0.3333
1.0987 14.0 84000 1.0986 0.3333
1.0992 15.0 90000 1.0986 0.3333
1.099 16.0 96000 1.0986 0.3333
1.0991 17.0 102000 1.0986 0.3333
1.0982 18.0 108000 1.0986 0.3333
1.0989 19.0 114000 1.0986 0.3333
1.099 20.0 120000 1.0986 0.3333
1.0991 21.0 126000 1.0986 0.3333
1.099 22.0 132000 1.0986 0.3333
1.099 23.0 138000 1.0986 0.3333
1.0984 24.0 144000 1.0986 0.3333
1.0985 25.0 150000 1.0986 0.3333

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for addykan/distilbert-1k

Finetuned
(7248)
this model