adi-vc's picture
First trained solution
2a0e131
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fba64e9a680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fba64e9a710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fba64e9a7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fba64e9a830>", "_build": "<function ActorCriticPolicy._build at 0x7fba64e9a8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fba64e9a950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fba64e9a9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fba64e9aa70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fba64e9ab00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fba64e9ab90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fba64e9ac20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fba64e9acb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fba64e95c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693767653263083092, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0CNL4cLFC86m9SPvD/CL77K7g9vcjiPgAAgD8AAAAAuuJaPs/EED3Nm3Y6VpJyOdYLpT5NndG5AACAPwAAgD/Nego9e36CujG6KrNEmJavFmxVusIgzjMAAIA/AACAP40/S76IqIY+uxOvPcpAZ77v2WO8rvYiOwAAAAAAAAAAtVuWvmYJgT+YQMC+7DUPvxhVgL4YBBe9AAAAAAAAAACAF0S+9EiWvLrYIDtwGXA5bgcJPuPKU7oAAIA/AACAP2YGlzyJb7w/BZxfPoSQfD5/Eb6700oXPQAAAAAAAAAATZU4PqmYZ7yarwW7624aORffzL3YEio6AACAPwAAgD96xkO+nyGZPIYOKDzli3E8zvKdvny/gT0AAIA/AACAP53TbL4p51s/zbbSviBA1b7FiHK+x3IavgAAAAAAAAAAmqUZPTAa/T70T449ZRq9vmSovzvf9MM7AAAAAAAAAABqsIg+z11GPqFvj767J2a+BDjIvDbU4bkAAAAAAAAAAMZrJr7rnp49drwBPTPiYr4WQdu80sanPAAAAAAAAAAAWqJUvuFJyLzrb0k7x3e7OdwEMj5iLYO6AACAPwAAgD8AAiW929dRP0JuqrypCBq/6WwBvalchbwAAAAAAAAAAI06Nz43QhI+wrsBvsPBPb7dRow8BTU1vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEJjqUNayKOMAWyUS9qMAXSUR0CY00jJMg2ZdX2UKGgGR0BFmaNMoMKDaAdLvWgIR0CY1C5BTn7pdX2UKGgGR0BhzblHSWqtaAdN6ANoCEdAmNWRvFWGRHV9lChoBkdAZAJnBciW3WgHTegDaAhHQJkxnFDOTq11fZQoaAZHQHCoP6oESuhoB0v1aAhHQJkzgaisXBR1fZQoaAZHQHCsAfIS13NoB0vUaAhHQJk1Iyad+Xt1fZQoaAZHQHEsH/LkjopoB0v2aAhHQJk1bMkhRqJ1fZQoaAZHQHHBHKbKA8VoB00TAWgIR0CZNyIo3JgcdX2UKGgGR0BwnkrWiDdyaAdNAQFoCEdAmTeCXQdCFHV9lChoBkdAcLJRs/IKdGgHTQoBaAhHQJk4NinYQJ51fZQoaAZHQHCZ86NlyzZoB0vVaAhHQJk4OxHG0eF1fZQoaAZHQG6BVCgK4QVoB00CAWgIR0CZOJtLteD4dX2UKGgGR0Bv6+85CF9KaAdL+WgIR0CZOKON5t3wdX2UKGgGR0Bw3w9W6shgaAdNEQFoCEdAmTjIAXEZSHV9lChoBkdAa7ubDMvAXWgHS9toCEdAmTmIE0SAY3V9lChoBkdAcIAa4tpVTGgHS9RoCEdAmTr/DP4VRHV9lChoBkdAZBA/C66J7GgHTegDaAhHQJk7Cee4Cp51fZQoaAZHQHEwynYQJ5VoB00BAWgIR0CZOzXGwRoRdX2UKGgGR0BlyuCAc1fmaAdN6ANoCEdAmTvAnUlRg3V9lChoBkdAcX23h4t6HGgHS+RoCEdAmTywVbiZOXV9lChoBkdAbi1IczZYgmgHS+toCEdAmT5lcpsoD3V9lChoBkdAcHToDPnjhmgHS9NoCEdAmT7bfgrH2nV9lChoBkdAcER+wTufEmgHS9RoCEdAmT8RfnfVJHV9lChoBkdAZREM3qAz6GgHTegDaAhHQJk/zBrN4aB1fZQoaAZHQHIHSMLncL1oB0v5aAhHQJlAFxS5y2h1fZQoaAZHQHHEbCBPKuBoB0vVaAhHQJlBWqwQlKN1fZQoaAZHQHCRJXQtz0ZoB00MAWgIR0CZQZ2Rq46PdX2UKGgGR0BvYx6By0a7aAdL7WgIR0CZQiHymQ8wdX2UKGgGR0ByILV6NVBEaAdL7mgIR0CZQlNet0V8dX2UKGgGR0BjW5yp71IzaAdN6ANoCEdAmUKjKoybhHV9lChoBkdAcW9KCQLeAWgHS9ZoCEdAmUMqJyhi9nV9lChoBkdAcQVTVlPJrGgHTQMBaAhHQJlDfBFd9lV1fZQoaAZHQHME6ynk1dhoB0vUaAhHQJlEt8IAwPB1fZQoaAZHQG8O8I7eVLVoB0vdaAhHQJlFjkjopx51fZQoaAZHQHA9Tj3mFJxoB03TAWgIR0CZRghOxjaxdX2UKGgGR0BxED28IzFdaAdNBQFoCEdAmUZ9dZ7ojnV9lChoBkdAbke0SAYpD2gHS/JoCEdAmUbFSS/0unV9lChoBkdAcJk5dWyTp2gHS9doCEdAmUfa3d9DyHV9lChoBkdAcBaPZqVQh2gHS+RoCEdAmUgGsijcmHV9lChoBkdAcGcV2zOX3WgHS+RoCEdAmUj9r9ETg3V9lChoBkdAcZ6WMCLde2gHS99oCEdAmUkpazNUwXV9lChoBkdAb/vG+bmU4mgHS+BoCEdAmUpGbXpW3nV9lChoBkdAcG75WRzRyGgHS+5oCEdAmUxctTUAk3V9lChoBkdAcn0J/5LytmgHTWkBaAhHQJlNZ5Y5ksl1fZQoaAZHQHAngfhddE9oB0vtaAhHQJlOAXBP9DR1fZQoaAZHQHE0Et/WlM1oB0vpaAhHQJlObI/7iyZ1fZQoaAZHQHA75Oi35N5oB0vLaAhHQJlO1Ukv9Lp1fZQoaAZHQG2yr8zhxYJoB0vwaAhHQJlPAWac7Qt1fZQoaAZHQHFfIP5HmRxoB0vXaAhHQJlPZDBuXNV1fZQoaAZHQHBJDXjENvxoB0v3aAhHQJlReD/VAiV1fZQoaAZHQG9q2OQyRCBoB0v8aAhHQJlR2MLncL11fZQoaAZHQG7+GDL8rI5oB0vVaAhHQJlU6ePJaJR1fZQoaAZHQHBhqFIuoP1oB0v1aAhHQJlVBPKuB+Z1fZQoaAZHQHEveG47Rv5oB01FAWgIR0CZVcXmNipedX2UKGgGR0ByYvKuB+WoaAdL3GgIR0CZVd5OJtSAdX2UKGgGR0BvuR+YtxuLaAdLz2gIR0CZVdq/ub7TdX2UKGgGR0BgpY9Net0WaAdN6ANoCEdAmVX2ICU5dXV9lChoBkdAY0r225QP7WgHTegDaAhHQJlX0rd30PJ1fZQoaAZHQGGMVqFh5PdoB03oA2gIR0CZWHbM5fdAdX2UKGgGR0BwkUH9m6GyaAdNBAFoCEdAmVien/DLsHV9lChoBkdAcQvGQjlgdGgHTRIBaAhHQJlYrNyHVPN1fZQoaAZHQHBr/bGm1ploB0v1aAhHQJlZ/Rnezld1fZQoaAZHQHMsBI4EOiFoB0vIaAhHQJlbeVnmJWN1fZQoaAZHQDZPbTMJQchoB0vAaAhHQJlcQvalDWt1fZQoaAZHQG8PJrULDyhoB0vbaAhHQJldezOX3QF1fZQoaAZHQHD8llbu+h5oB0vwaAhHQJldeV1Oj7B1fZQoaAZHQG+geTNdJJ5oB0veaAhHQJldhgNPP9l1fZQoaAZHQHEKB8x9G7VoB0vkaAhHQJld4l/pdKN1fZQoaAZHQG9NY9Pk7wNoB0vVaAhHQJlhMG6f8Mx1fZQoaAZHQG8OccMmWt5oB0vgaAhHQJlhgtVaOgh1fZQoaAZHQHHmi97F85VoB00OAWgIR0CZYt/PPcBVdX2UKGgGR0BftiJCSidraAdN6ANoCEdAmWNmQwK0D3V9lChoBkdAcLpgv114gWgHTQgBaAhHQJlj3VLBbfR1fZQoaAZHQEJ0pMHryDtoB0uzaAhHQJlkMrPMSsd1fZQoaAZHQHGLROxjawloB00MAWgIR0CZZhJDVpbmdX2UKGgGR0BwaHoaDPGAaAdLyWgIR0CZZ6A+pwS8dX2UKGgGR0Bmb4m9g4OuaAdN6ANoCEdAmWgV3EAHV3V9lChoBkdAb0pgOz6acGgHS+xoCEdAmWj0pd8iOnV9lChoBkdAcml+xnnMdWgHTQsBaAhHQJlqW65Gz8h1fZQoaAZHQHGFHuNPxhFoB0vUaAhHQJlrqa+evp11fZQoaAZHQGOhReLNwBJoB03oA2gIR0CZbE+az/p/dX2UKGgGR0BxMSoJiRW+aAdLy2gIR0CZbPhbGFSLdX2UKGgGR0BxUeyJKraNaAdLvmgIR0CZbSqDbrTqdX2UKGgGR0BwGd2hZha1aAdL8GgIR0CZbiTq0MPSdX2UKGgGR0BvvD/ffoA5aAdL7GgIR0CZbtRhc7hfdX2UKGgGR0Btu5SgoPTYaAdL2GgIR0CZcCjCHh0hdX2UKGgGR0BIqqoybhFWaAdLtmgIR0CZc+P8Q7LddX2UKGgGR0BvB9NBWxQjaAdNEAFoCEdAmXQb4WUKRnV9lChoBkdAcTWiM5wOv2gHS/loCEdAmXRDRIBikXV9lChoBkdAb7eD6FdszmgHS+BoCEdAmXR1t4zJp3V9lChoBkdAbYlKZDzAe2gHS9RoCEdAmXVjE74i5nV9lChoBkdAcCJ1O0svqWgHS+toCEdAmXaaiGnGbXV9lChoBkdAY4ZreqJdjWgHTegDaAhHQJl3ljawljV1fZQoaAZHQG/htWEK3NNoB0viaAhHQJl3wYyfthN1fZQoaAZHQHDohp1zQu5oB00eAWgIR0CZeHQP7N0OdX2UKGgGR0ByicVdonKGaAdNJwFoCEdAmXmDebd8A3V9lChoBkdAcoiDF6zE8GgHTQwBaAhHQJl6E+HJtBR1fZQoaAZHQGAsT06HTJBoB03oA2gIR0CZenxN7BwddX2UKGgGR0Bu8kkUsWfsaAdLzGgIR0CZevF/hESedX2UKGgGR0BwAa+sYEW7aAdL9mgIR0CZfAoCuEEldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}