aditira's picture
End of training
ad8c76a
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4875

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3327
  • Accuracy: 0.4875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8526 1.0 10 1.8929 0.3563
1.7464 2.0 20 1.7105 0.3625
1.6096 3.0 30 1.5898 0.4625
1.4988 4.0 40 1.5056 0.5188
1.4218 5.0 50 1.4349 0.4938
1.3439 6.0 60 1.4127 0.525
1.2799 7.0 70 1.3780 0.55
1.2037 8.0 80 1.3463 0.5
1.1637 9.0 90 1.3236 0.55
1.1361 10.0 100 1.2950 0.5437
1.0836 11.0 110 1.3059 0.525
1.046 12.0 120 1.2707 0.525
1.0277 13.0 130 1.2686 0.5563
1.0236 14.0 140 1.2790 0.5062
0.9926 15.0 150 1.2763 0.5687

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3