|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p1 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: aditnnda/gacoanReviewer |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# aditnnda/gacoanReviewer |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0001 |
|
- Validation Loss: 0.5471 |
|
- Train Accuracy: 0.9163 |
|
- Epoch: 24 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3550, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Accuracy | Epoch | |
|
|:----------:|:---------------:|:--------------:|:-----:| |
|
| 0.2751 | 0.2043 | 0.9107 | 0 | |
|
| 0.1202 | 0.2077 | 0.9177 | 1 | |
|
| 0.0583 | 0.2770 | 0.9079 | 2 | |
|
| 0.0435 | 0.3412 | 0.9066 | 3 | |
|
| 0.0251 | 0.3762 | 0.9079 | 4 | |
|
| 0.0208 | 0.2241 | 0.9303 | 5 | |
|
| 0.0070 | 0.2794 | 0.9317 | 6 | |
|
| 0.0151 | 0.3823 | 0.9219 | 7 | |
|
| 0.0088 | 0.3740 | 0.9261 | 8 | |
|
| 0.0019 | 0.4286 | 0.9261 | 9 | |
|
| 0.0030 | 0.6086 | 0.8912 | 10 | |
|
| 0.0052 | 0.4023 | 0.9344 | 11 | |
|
| 0.0005 | 0.5193 | 0.9121 | 12 | |
|
| 0.0002 | 0.5171 | 0.9135 | 13 | |
|
| 0.0002 | 0.5276 | 0.9163 | 14 | |
|
| 0.0002 | 0.5344 | 0.9135 | 15 | |
|
| 0.0002 | 0.5362 | 0.9163 | 16 | |
|
| 0.0001 | 0.5407 | 0.9163 | 17 | |
|
| 0.0001 | 0.5406 | 0.9163 | 18 | |
|
| 0.0001 | 0.5484 | 0.9149 | 19 | |
|
| 0.0001 | 0.5406 | 0.9177 | 20 | |
|
| 0.0001 | 0.5431 | 0.9177 | 21 | |
|
| 0.0001 | 0.5453 | 0.9163 | 22 | |
|
| 0.0001 | 0.5466 | 0.9163 | 23 | |
|
| 0.0001 | 0.5471 | 0.9163 | 24 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|