|
--- |
|
tags: |
|
- flair |
|
- token-classification |
|
- sequence-tagger-model |
|
language: de |
|
--- |
|
# Tagger for literary character mentions (DROC corpus) |
|
|
|
This is the character recognizer model that is being used in [LLpro](https://github.com/cophi-wue/LLpro). It detects character mentions in literary fiction: (a) proper nouns ("Alice", "Effi"), and (b) nominal phrases ("Gärtner", "Mutter", "Graf", "Idiot", "Schöne", ...). The model is trained on the [DROC dataset](https://gitlab2.informatik.uni-wuerzburg.de/kallimachos/DROC-Release), fine-tuning the domain-adapted [lkonle/fiction-gbert-large](https://huggingface.co/lkonle/fiction-gbert-large). ([Training code](https://github.com/cophi-wue/LLpro/blob/main/contrib/train_character_recognizer.py)) |
|
|
|
F1-Score: **91.85** (on a held-out data split; micro average on B-PER and I-PER labels) |
|
|
|
|
|
--- |
|
|
|
**Demo Usage:** |
|
|
|
```python |
|
from flair.data import Sentence |
|
from flair.models import SequenceTagger |
|
|
|
# load tagger |
|
tagger = SequenceTagger.load("aehrm/droc-character-recognizer") |
|
|
|
# make example sentence |
|
sentence = Sentence("Effi folgte Graf Instetten nach Kessin.") |
|
|
|
# predict NER tags |
|
tagger.predict(sentence) |
|
|
|
# print sentence |
|
print(sentence) |
|
# >>> Sentence[7]: "Effi folgte Graf Instetten nach Kessin." → ["Effi"/PER, "Graf Instetten"/PER] |
|
|
|
# print predicted NER spans |
|
print('The following NER tags are found:') |
|
# iterate over entities and print |
|
for entity in sentence.get_spans('character'): |
|
print(entity) |
|
# >>> Span[0:1]: "Effi" → PER (1.0) |
|
# >>> Span[2:4]: "Graf Instetten" → PER (1.0) |
|
``` |
|
|
|
**Cite**: |
|
|
|
Please cite the following paper when using this model. |
|
|
|
``` |
|
|
|
@inproceedings{ehrmanntraut-et-al-llpro-2023, |
|
address = {Ingolstadt, Germany}, |
|
title = {{LLpro}: A Literary Language Processing Pipeline for {German} Narrative Text}, |
|
booktitle = {Proceedings of the 10th Conference on Natural Language Processing ({KONVENS} 2022)}, |
|
publisher = {{KONVENS} 2023 Organizers}, |
|
author = {Ehrmanntraut, Anton and Konle, Leonard and Jannidis, Fotis}, |
|
year = {2023}, |
|
} |
|
|
|
``` |