afaji's picture
fresh-2-layer-medmcqa50000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
426d933 verified
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fresh-2-layer-medmcqa50000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fresh-2-layer-medmcqa50000-distill-of-fresh-2-layer-mmlu_EVAL_mmlu
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 178.1362
- Accuracy: 0.4510
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 321
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.06 | 100 | 200.7935 | 0.24 |
| No log | 0.13 | 200 | 195.0955 | 0.322 |
| No log | 0.19 | 300 | 199.3146 | 0.348 |
| No log | 0.26 | 400 | 181.3482 | 0.378 |
| 141.8956 | 0.32 | 500 | 183.5053 | 0.406 |
| 141.8956 | 0.38 | 600 | 175.3492 | 0.414 |
| 141.8956 | 0.45 | 700 | 179.5743 | 0.44 |
| 141.8956 | 0.51 | 800 | 178.0992 | 0.456 |
| 141.8956 | 0.58 | 900 | 167.6717 | 0.458 |
| 92.2658 | 0.64 | 1000 | 173.9797 | 0.422 |
| 92.2658 | 0.7 | 1100 | 177.7031 | 0.44 |
| 92.2658 | 0.77 | 1200 | 176.5930 | 0.45 |
| 92.2658 | 0.83 | 1300 | 184.5445 | 0.45 |
| 92.2658 | 0.9 | 1400 | 180.6332 | 0.466 |
| 80.2568 | 0.96 | 1500 | 180.5694 | 0.462 |
| 80.2568 | 1.02 | 1600 | 173.9805 | 0.462 |
| 80.2568 | 1.09 | 1700 | 168.0511 | 0.46 |
| 80.2568 | 1.15 | 1800 | 177.9322 | 0.458 |
| 80.2568 | 1.22 | 1900 | 172.7217 | 0.462 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0