summerschool-bert-massive

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8479
  • Accuracy: 0.8283
  • F1: 0.8139

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.8604 0.1389 100 3.3964 0.2720 0.2091
3.046 0.2778 200 2.5353 0.4870 0.3971
2.3977 0.4167 300 2.0141 0.6193 0.5592
1.9293 0.5556 400 1.6738 0.6803 0.6328
1.6997 0.6944 500 1.4307 0.7334 0.6937
1.505 0.8333 600 1.2759 0.7772 0.7469
1.3531 0.9722 700 1.1656 0.7757 0.7445
1.1651 1.1111 800 1.0720 0.7914 0.7707
1.0441 1.25 900 0.9979 0.8032 0.7838
1.0021 1.3889 1000 0.9496 0.8146 0.7977
0.9732 1.5278 1100 0.8996 0.8278 0.8116
0.9025 1.6667 1200 0.8816 0.8214 0.8053
0.8952 1.8056 1300 0.8612 0.8273 0.8128
0.8435 1.9444 1400 0.8479 0.8283 0.8139

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for afaji/summerschool-bert-massive

Finetuned
(2281)
this model