ahishamm's picture
End of training
22cc86b verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - ahishamm/QURANICWhisperDataset
metrics:
  - wer
model-index:
  - name: QURANIC Whisper Large V3 - full
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: QURANICWhisperDataset
          type: ahishamm/QURANICWhisperDataset
          args: 'config: ar, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 121.00549461448435

QURANIC Whisper Large V3 - full

This model is a fine-tuned version of openai/whisper-large-v3 on the QURANICWhisperDataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0375
  • Wer: 121.0055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1349 0.2 1000 0.1227 256.8256
0.1098 0.4 2000 0.0918 438.2193
0.1071 0.6 3000 0.0839 286.1663
0.0837 0.8 4000 0.0737 295.5091
0.0672 1.0 5000 0.0611 293.6147
0.03 1.2 6000 0.0559 204.9680
0.0104 1.4 7000 0.0485 189.5761
0.0245 1.6 8000 0.0456 141.0698
0.0446 1.8 9000 0.0398 134.5774
0.0231 2.0 10000 0.0375 121.0055

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.0
  • Datasets 2.18.0
  • Tokenizers 0.15.1