Edit model card

swinv2-large-patch4-window12-192-22k-finetuned-eurosat-50

This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12-192-22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6967
  • Accuracy: 0.7220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.005
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.97 9 1.6984 0.3729
No log 1.95 18 1.5150 0.4881
1.6944 2.92 27 1.3304 0.5390
1.6944 4.0 37 1.1761 0.6
1.3633 4.97 46 1.0588 0.6373
1.3633 5.95 55 0.9952 0.6475
1.1208 6.92 64 0.9326 0.6610
1.1208 8.0 74 0.8785 0.6712
0.9891 8.97 83 0.8478 0.6746
0.9891 9.95 92 0.8144 0.6847
0.9011 10.92 101 0.7774 0.7017
0.9011 12.0 111 0.7567 0.6983
0.8143 12.97 120 0.7525 0.6949
0.8143 13.95 129 0.7309 0.7051
0.8143 14.92 138 0.7141 0.7119
0.7926 16.0 148 0.7095 0.7186
0.7926 16.97 157 0.7057 0.7220
0.7439 17.95 166 0.6988 0.7220
0.7439 18.92 175 0.6967 0.7220
0.7533 19.46 180 0.6967 0.7220

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results