|
--- |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-POS-arabic |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-POS-arabic |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0822 |
|
- F1: 0.9689 |
|
- Accuracy: 0.9785 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| 0.5584 | 1.0 | 95 | 0.1231 | 0.9537 | 0.9679 | |
|
| 0.1191 | 2.0 | 190 | 0.0933 | 0.9645 | 0.9755 | |
|
| 0.0901 | 3.0 | 285 | 0.0868 | 0.9667 | 0.9768 | |
|
| 0.0757 | 4.0 | 380 | 0.0851 | 0.9675 | 0.9774 | |
|
| 0.066 | 5.0 | 475 | 0.0822 | 0.9689 | 0.9785 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.2 |
|
|