ahmeddbahaa's picture
update model card README.md
0898e8e
|
raw
history blame
2.77 kB
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
datasets:
  - xlsum
metrics:
  - rouge
model-index:
  - name: AraBART-finetuned-ar
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xlsum
          type: xlsum
          args: arabic
        metrics:
          - name: Rouge1
            type: rouge
            value: 2.2459

AraBART-finetuned-ar

This model is a fine-tuned version of moussaKam/AraBART on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3785
  • Rouge1: 2.2459
  • Rouge2: 0.0
  • Rougel: 2.2459
  • Rougelsum: 2.2459
  • Gen Len: 19.695

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.6
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 0.98 32 2.7774 1.0638 0.0 1.0638 1.182 19.5177
No log 1.98 64 2.4730 1.182 0.0 1.3002 1.182 19.8121
No log 2.98 96 2.4129 2.3641 0.3546 2.3641 2.3641 19.8298
No log 3.98 128 2.3724 2.1277 0.3546 2.1277 2.1277 19.8121
No log 4.98 160 2.3560 1.8913 0.3546 1.8913 1.8913 19.805
No log 5.98 192 2.3574 1.5366 0.0 1.5366 1.6548 19.7979
No log 6.98 224 2.3676 2.1277 0.3546 2.2459 2.1277 19.6348
No log 7.98 256 2.3656 2.0095 0.0 2.0095 2.0095 19.844
No log 8.98 288 2.3751 2.2459 0.0 2.3641 2.2459 19.6738
No log 9.98 320 2.3785 2.2459 0.0 2.2459 2.2459 19.695

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6