See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: translation-dataset-v3-train.hf
type: alpaca
train_on_split: train
test_datasets:
- path: translation-dataset-v3-test.hf
type: alpaca
split: train
dataset_prepared_path: ./last_run_prepared
output_dir: ./llama_3_translator
hub_model_id: ahmedsamirio/llama_3_translator_v3
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
adapter: lora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: en_eg_translator
wandb_entity: ahmedsamirio
wandb_name: llama_3_en_eg_translator_v3
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
Egyptian Arabic Translator Llama-3 8B
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the ahmedsamirio/oasst2-9k-translation dataset.
Model description
This model is an attempt to create a small translation model from English to Egyptian Arabic.
Intended uses & limitations
- Translating instruction finetuning and text generation datasets
Inference code
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("ahmedsamirio/Egyptian-Arabic-Translator-Llama-3-8B")
model = AutoModelForCausalLM.from_pretrained("ahmedsamirio/Egyptian-Arabic-Translator-Llama-3-8B")
pipe = pipeline(task='text-generation', model=model, tokenizer=tokenizer)
en_template = """<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Translate the following text to English.
### Input:
{text}
### Response:
"""
ar_template = """<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Translate the following text to Arabic.
### Input:
{text}
### Response:
"""
eg_template = """<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Translate the following text to Egyptian Arabic.
### Input:
{text}
### Response:
"""
text = """Some habits are known as "keystone habits," and these influence the formation of other habits. \
For example, identifying as the type of person who takes care of their body and is in the habit of exercising regularly, \
can also influence eating better and using credit cards less. In business, \
safety can be a keystone habit that influences other habits that result in greater productivity.[17]"""
ar_text = pipe(ar_template.format(text=text),
max_new_tokens=256,
do_sample=True,
temperature=0.3,
top_p=0.5)
eg_text = pipe(eg_template.format(text=ar_text),
max_new_tokens=256,
do_sample=True,
temperature=0.3,
top_p=0.5)
print("Original Text:" text)
print("\nArabic Translation:", ar_text)
print("\nEgyptian Arabic Translation:", eg_text)
Training and evaluation data
ahmedsamirio/oasst2-9k-translation
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9661 | 0.0008 | 1 | 1.3816 |
0.5611 | 0.1002 | 123 | 0.9894 |
0.6739 | 0.2004 | 246 | 0.8820 |
0.5168 | 0.3006 | 369 | 0.8229 |
0.5582 | 0.4008 | 492 | 0.7931 |
0.552 | 0.5010 | 615 | 0.7814 |
0.5129 | 0.6012 | 738 | 0.7591 |
0.5887 | 0.7014 | 861 | 0.7444 |
0.6359 | 0.8016 | 984 | 0.7293 |
0.613 | 0.9018 | 1107 | 0.7179 |
0.5671 | 1.0020 | 1230 | 0.7126 |
0.4956 | 1.0847 | 1353 | 0.7034 |
0.5055 | 1.1849 | 1476 | 0.6980 |
0.4863 | 1.2851 | 1599 | 0.6877 |
0.4538 | 1.3853 | 1722 | 0.6845 |
0.4362 | 1.4855 | 1845 | 0.6803 |
0.4291 | 1.5857 | 1968 | 0.6834 |
0.6208 | 1.6859 | 2091 | 0.6830 |
0.582 | 1.7862 | 2214 | 0.6781 |
0.5001 | 1.8864 | 2337 | 0.6798 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 245
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.