|
--- |
|
language: |
|
- ru |
|
tags: |
|
- spellchecking |
|
- pytorch |
|
- natural language generation |
|
license: mit |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
library_name: transformers |
|
model-index: |
|
- name: sage-fredt5-large |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: RUSpellRU (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: 64.9 |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: 61.9 |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: 80.4 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: MultidomainGold (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: x |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: x |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: x |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: MedSpellchecker (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: x |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: x |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: x |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: GitHubTypoCorpusRu (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: x |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: x |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: x |
|
verified: false |
|
--- |
|
|
|
# sage-fredt5-large |
|
|
|
![banner](.images/sage_banner.jpg) |
|
|
|
### Summary |
|
|
|
The model corrects spelling errors and typos by bringing all the words in the text to the norm of the Russian language. |
|
Corrector was trained based on the model [M2M100-1.2B](https://huggingface.co/facebook/m2m100_1.2B). |
|
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage). |
|
|
|
### Public references |
|
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023 |
|
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023 |
|
- [Paper about SAGE and our best solution](https://arxiv.org/abs/2308.09435), Review EACL 2024 |
|
|
|
|
|
### Examples |
|
| Input | Output | |
|
| --- | --- | |
|
| Думю ешцъа лет череа 10 ретроспективно просматривотьэ то будкетцц мне невероя тна ин те р но | Думаю что лет через 10 ретроспективно просматривать это будет мне невероятно интересно | |
|
| Основая цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий, сокращение временных показателей реагирования. | Основная цель мероприятия - практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования. | |
|
| прийдя в МГТУ я был удивлен никого необноружив там… | прийдя в МГТУ я был удивлен никого не обнаружив там... | |
|
| | | |
|
|
|
## Metrics |
|
### Quality |
|
Below are automatic metrics for determining the correctness of the spell checkers. |
|
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets: |
|
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors; |
|
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works; |
|
- **MedSpellChecker**: texts with errors from medical anamnesis; |
|
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com); |
|
|
|
**RUSpellRU** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| M2M100-1.2B | 59.4 | 43.3 | 50.1 | |
|
| ChatGPT gpt-3.5-turbo-0301 | 55.8 | 75.3 | 64.1 | |
|
| ChatGPT gpt-4-0314 | 57.0 | 75.9 | 63.9 | |
|
| ChatGPT text-davinci-003 | 55.9 | 75.3 | 64.2 | |
|
| Yandex.Speller | 83.0 | 59.8 | 69.5 | |
|
| JamSpell | 42.1 | 32.8 | 36.9 | |
|
| HunSpell | 31.3 | 34.9 | 33.0 | |
|
|
|
**MultidomainGold** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| M2M100-1.2B | 56.4 | 44.8 | 49.9 | |
|
| ChatGPT gpt-3.5-turbo-0301 | 33.8 | 72.1 | 46.0 | |
|
| ChatGPT gpt-4-0314 | 34.0 | 73.2 | 46.4 | |
|
| ChatGPT text-davinci-003 | 33.6 | 72.0 | 45.8 | |
|
| Yandex.Speller | 52.9 | 51.4 | 52.2 | |
|
| JamSpell | 25.7 | 30.6 | 28.0 | |
|
| HunSpell | 16.2 | 40.1 | 23.0 | |
|
|
|
**MedSpellChecker** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| M2M100-1.2B | 63.7 | 57.8 | 60.6 | |
|
| ChatGPT gpt-3.5-turbo-0301 | 53.2 | 67.6 | 59.6 | |
|
| ChatGPT gpt-4-0314 | 54.2 | 69.4 | 60.9 | |
|
| ChatGPT text-davinci-003 | 47.8 | 68.4 | 56.3 | |
|
| Yandex.Speller | 80.6 | 47.8 | 60.0 | |
|
| JamSpell | 24.6 | 29.7 | 26.9 | |
|
| HunSpell | 10.3 | 40.2 | 16.4 | |
|
|
|
**GitHubTypoCorpusRu** |
|
| Model | Precision | Recall | F1 | |
|
| --- | --- | --- | --- | |
|
| M2M100-1.2B | 45.7 | 41.4 | 43.5 | |
|
| ChatGPT gpt-3.5-turbo-0301 | 43.8 | 57.0 | 49.6 | |
|
| ChatGPT gpt-4-0314 | 45.2 | 58.2 | 51.0 | |
|
| ChatGPT text-davinci-003 | 46.5 | 58.1 | 51.7 | |
|
| Yandex.Speller | 67.7 | 37.5 | 48.3 | |
|
| JamSpell | 49.5 | 29.9 | 37.3 | |
|
| HunSpell | 28.5 | 30.7 | 29.6 | |
|
|
|
## How to use |
|
```python |
|
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer |
|
path_to_model = "ai-forever/RuM2M100-1.2B" |
|
model = M2M100ForConditionalGeneration.from_pretrained(path_to_model) |
|
tokenizer = M2M100Tokenizer.from_pretrained(path_to_model, src_lang="ru", tgt_lang="ru") |
|
sentence = "прийдя в МГТУ я был удивлен никого необноружив там…" |
|
encodings = tokenizer(sentence, return_tensors="pt") |
|
generated_tokens = model.generate( |
|
**encodings, forced_bos_token_id=tokenizer.get_lang_id("ru")) |
|
answer = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) |
|
print(answer) |
|
#["прийдя в МГТУ я был удивлен никого не обнаружив там..."] |
|
``` |
|
|
|
## Resources |
|
- [SAGE library](https://github.com/ai-forever/sage), GitHub |
|
- [ruM2M100-1.2B](https://huggingface.co/ai-forever/RuM2M100-1.2B), HuggingFace |
|
- [ruM2M100-418M](https://huggingface.co/ai-forever/RuM2M100-420M), HuggingFace |
|
- [FredT5-large-spell](https://huggingface.co/ai-forever/FRED-T5-large-spell), HuggingFace |
|
- [T5-large-spell](https://huggingface.co/ai-forever/T5-large-spell), HuggingFace |
|
|
|
## License |
|
Model [M2M100-1.2B](https://huggingface.co/facebook/m2m100_1.2B), on the basis of which our solution is made, and its source code are supplied under the MIT open license. |
|
Our solution also comes with MIT license. |
|
|
|
## Specifications |
|
- File size: 5 Gb; |
|
- Framework: pytorch |
|
- Format: AI Service |
|
- Version: v1.0 |
|
- Developer: SberDevices, AGI NLP |
|
|
|
## Contacts |
|
nikita.martynov.98@list.ru |