|
--- |
|
language: |
|
- ru |
|
tags: |
|
- spellchecking |
|
- pytorch |
|
- natural language generation |
|
license: mit |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
library_name: transformers |
|
model-index: |
|
- name: sage-fredt5-large |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: RUSpellRU (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: 62.2 |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: 60.2 |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: 78.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: MultidomainGold (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: 46.3 |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: 21.6 |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: 34.0 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: MedSpellchecker (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: 42.7 |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: 15.7 |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: 41.9 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: spellcheck_benchmark |
|
name: GitHubTypoCorpusRu (spell&punct) |
|
metrics: |
|
- name: F1 (spell) |
|
type: f1_spell |
|
value: 46.3 |
|
verified: false |
|
- name: F1 (punct) |
|
type: f1_punct |
|
value: 20.2 |
|
verified: false |
|
- name: F1 (case) |
|
type: f1_case |
|
value: 12.6 |
|
verified: false |
|
--- |
|
|
|
# sage-fredt5-large |
|
|
|
![banner](images/sage_banner.jpg) |
|
|
|
## Summary |
|
|
|
The model corrects spelling and punctuation errors and typos by bringing all the words in the text to the norm of the Russian language. |
|
Corrector had been trained based on the model [FRED-T5-large](https://huggingface.co/ai-forever/FRED-T5-large). |
|
An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library [SAGE](https://github.com/ai-forever/sage). |
|
|
|
## Public references |
|
- [SAGE library announcement](https://youtu.be/yFfkV0Qjuu0), DataFest 2023 |
|
- [Paper about synthetic error generation methods](https://www.dialog-21.ru/media/5914/martynovnplusetal056.pdf), Dialogue 2023 |
|
- [SAGE EACL 2024 paper](https://aclanthology.org/2024.findings-eacl.10/) |
|
|
|
|
|
## Examples |
|
| Input | Output | |
|
| --- | --- | |
|
| И не чсно прохожим в этот день непогожйи почему я веселый такйо | И не ясно прохожим в этот день непогожий, почему я веселый такой. | |
|
| Каждй день воттак делой, и спена балеть нибудет. А вотак каждый день ниделай | Каждый день вот так делай и спина болеть не будет. А вот так каждый день не делай. | |
|
| Основая цель мероприятия практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий сокращение временных показателей реагирования. | Основная цель мероприятия — практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования | |
|
| | | |
|
|
|
## Metrics |
|
### Quality |
|
Below are automatic metrics for determining the correctness of the spell checkers. |
|
We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets: |
|
- **RUSpellRU**: texts collected from ([LiveJournal](https://www.livejournal.com/media)), with manually corrected typos and errors; |
|
- **MultidomainGold**: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works; |
|
- **MedSpellChecker**: texts with errors from medical anamnesis; |
|
- **GitHubTypoCorpusRu**: spelling errors and typos in commits from [GitHub](https://github.com); |
|
|
|
**RUSpellRU** |
|
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| sage-fredt5-large | 57.3 | 68.0 | 62.2 | 86.7 | 46.1 | 60.2 | 92.1 | 67.8 | 78.1 | |
|
| sage-fredt5-large (ft) | 88.4 | 80.9 | 84.5 | 88.2 | 85.3 | 86.8 | 95.5 | 94.0 | 94.7 | |
|
| sage-ai-service | 90.3 | 86.3 | 88.2 | 90.3 | 86.6 | 88.4 | 95.2 | 95.9 | 95.6 | |
|
| gpt-3.5-turbo | 33.6 | 58.5 | 42.7 | 85.9 | 64.6 | 73.7 | 84.9 | 73.9 | 79.0 | |
|
| gpt-4 | 54.9 | 76.7 | 64.0 | 84.0 | 82.3 | 83.2 | 91.5 | 90.2 | 90.9 | |
|
|
|
|
|
**MultidomainGold** |
|
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| sage-fredt5-large | 43.4 | 49.7 | 46.3 | 21.8 | 21.3 | 21.6 | 58.8 | 23.9 | 34.0 | |
|
| sage-fredt5-large (ft) | 80.3 | 75.1 | 77.6 | 69.0 | 66.5 | 67.7 | 78.6 | 80.0 | 79.3 | |
|
| sage-ai-service | 81.6 | 77.7 | 79.6 | 70.2 | 67.5 | 68.8 | 80.5 | 80.5 | 80.5 | |
|
| gpt-3.5-turbo | 18.8 | 48.1 | 27.1 | 42.0 | 31.8 | 36.2 | 47.1 | 51.3 | 49.1 | |
|
| gpt-4 | 25.4 | 68.0 | 37.0 | 57.8 | 54.3 | 56.0 | 54.0 | 67.5 | 60.0 | |
|
|
|
|
|
**MedSpellChecker** |
|
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| sage-fredt5-large | 35.2 | 54.5 | 42.8 | 19.2 | 13.2 | 15.7 | 48.7 | 36.8 | 41.9 | |
|
| sage-fredt5-large (ft) | 72.5 | 72.2 | 72.3 | 74.6 | 66.4 | 70.3 | 79.3 | 85.1 | 82.1 | |
|
| sage-ai-service | 71.3 | 73.5 | 72.4 | 75.1 | 69.2 | 72.0 | 80.9 | 72.8 | 76.6| |
|
| gpt-3.5-turbo | 14.7 | 45.9 | 22.3 | 69.9 | 52.3 | 59.8 | 26.4 | 41.8 | 32.3 | |
|
| gpt-4 | 37.8 | 72.3 | 49.6 | 81.4 | 64.3 | 71.9 | 73.0 | 62.1 | 67.1 | |
|
|
|
|
|
**GitHubTypoCorpusRu** |
|
| Model | Pr. (spell) | Rec. (spell) | F1 (spell) | Pr. (punc) | Rec. (punc) | F1 (punc) | Pr. (case) | Rec. (case) | F1 (case) | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |
|
| sage-fredt5-large | 46.0 | 46.6 | 46.3 | 22.7 | 18.3 | 20.2 | 12.0 | 13.2 | 12.6 | |
|
| sage-fredt5-large (ft) | 67.5 | 53.2 | 59.5 | 48.5 | 38.0 | 42.6 | 37.3 | 50.0 | 42.7 | |
|
| sage-ai-service | 70.8 | 56.3 | 62.7 | 48.9 | 35.8 | 41.4 | 32.9 | 45.3 | 38.1| |
|
| gpt-3.5-turbo | 23.7 | 38.7 | 29.4 | 37.6 | 23.3 | 28.7 | 19.6 | 35.9 | 25.3 | |
|
| gpt-4 | 27.0 | 52.8 | 35.7 | 45.9 | 32.6 | 38.2 | 25.7 | 36.8 | 30.2 | |
|
|
|
## How to use |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-fredt5-large") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-fredt5-large", device_map='cuda') |
|
|
|
sentence = "И не чсно прохожим в этот день непогожйи почему я веселый такйо" |
|
inputs = tokenizer(sentence, max_length=None, padding="longest", truncation=False, return_tensors="pt") |
|
outputs = model.generate(**inputs.to(model.device), max_length = inputs["input_ids"].size(1) * 1.5) |
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) |
|
|
|
# ["И не ясно прохожим в этот день непогожий, почему я весёлый такой?"] |
|
|
|
``` |
|
|
|
## Limitations |
|
- The model is intended to be fine-tuned on sets with natural errors for better performance. The realized model is a pre-train and pre-train task is different from the usual spell checking in terms of density of the noise in a corpus and its origin; |
|
- Complex formatting may cause some trouble in output generation. |
|
|
|
## Resources |
|
- [SAGE library](https://github.com/ai-forever/sage), GitHub |
|
- [sage-fredt5-large](https://huggingface.co/ai-forever/sage-fredt5-large), HuggingFace |
|
- [sage-fredt5-distilled-95m](https://huggingface.co/ai-forever/sage-fredt5-distilled-95m), HuggingFace |
|
- [sage-m2m100-1.2B](https://huggingface.co/ai-forever/sage-m2m100-1.2B), HuggingFace |
|
- [sage-mt5-large](https://huggingface.co/ai-forever/sage-mt5-large), HuggingFace |
|
|
|
## License |
|
Model [FRED-T5-large](https://huggingface.co/ai-forever/FRED-T5-large), on the basis of which our solution is made, and its source code are supplied under the MIT license. |
|
Our solution comes with MIT license also. |
|
|
|
## Specifications |
|
- File size: 3.3 Gb; |
|
- Framework: pytorch |
|
- Version: v1.0 |
|
- Developer: SberDevices, AGI NLP |
|
|
|
## Contacts |
|
nikita.martynov.98@list.ru |