metadata
tags:
- paraphrase-generation
- multilingual
- nlp
- indicnlp
datasets:
- ai4bharat/IndicParaphrase
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
licenses:
- cc-by-nc-4.0
MultiIndicParaphraseGeneration
This repository contains the IndicBARTSS checkpoint finetuned on the 11 languages of IndicParaphrase dataset. For finetuning details, see the paper.
Using this model in transformers
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS")
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS")
# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
# To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
# First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]])
# For generation. Pardon the messiness. Note the decoder_start_token_id.
model.eval() # Set dropouts to zero
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # I am a boy
# Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library.
# What if we mask?
inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # I am happy
inp = tokenizer("मैं [MASK] हूठ</s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
model_output=model.generate(inp, use_cache=True, num_beams=4,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # मैं जानता हूà¤
inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3,num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # मला ओळखलं पाहिजे
Benchmarks
Scores on the IndicParaphrase
test sets are as follows:
Language | BLEU / Self-BLEU / iBLEU |
---|---|
as | 1.19 / 1.64 / 0.34 |
bn | 10.04 / 1.08 / 6.70 |
gu | 18.69 / 1.62 / 12.60 |
hi | 25.05 / 1.75 / 17.01 |
kn | 13.14 / 1.89 / 8.63 |
ml | 8.71 / 1.36 / 5.69 |
mr | 18.50 / 1.49 / 12.50 |
or | 23.02 / 2.68 / 15.31 |
pa | 17.61 / 1.37 / 11.92 |
ta | 16.25 / 2.13 / 10.74 |
te | 14.16 / 2.29 / 9.23 |
Citation
If you use this model, please cite the following paper:
@inproceedings{Kumar2022IndicNLGSM,
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
year={2022},
url = "https://arxiv.org/abs/2203.05437"
}