Persian-Mistral-7B / README.md
aidal's picture
Update README.md
31fcafb verified
|
raw
history blame
4.34 kB
metadata
language:
  - en
  - fa

Hugging Face Transformers Library

English | 简体中文 | 繁體中文 | 한국어 | Español | 日本語 | हिन्दी | Русский | Рortuguês | తెలుగు | Français | Deutsch | Tiếng Việt |

## [Model description](#model-description)|[Example output](#example-output)|[Banchmark results](#banchmark-results)|[How to use](#how-to-use)|[Training and finetuning](#training-and-finetuning) |

Model description


Example output:

Example 1:

  • Input: "سلام، خوبی؟"
  • Output: "سلام، خوشحالم که با شما صحبت می کنم. چطور می توانم به شما کمک کنم؟"

Example 2: - Input: "سلام، خوبی؟" - Output: "سلام، خوشحالم که با شما صحبت می کنم. چطور می توانم به شما کمک کنم؟"

Banchmark results

model dataset max_token prompt score
base-model-7b ARC-easy-dev 2 en-1 0.41929
base-model-7b ARC-easy-dev 80 en-2 0.39122
base-model-7b ARC-easy-dev 300 en-1 0.34448
model dataset max_token prompt score
--------------- ------------------ ----------- -------- ---------
fa-model-7b ARC-easy-dev 80 en-1 0.37894
fa-model-7b ARC-easy-dev 80 en-2 0.33333
fa-model-7b ARC-easy-dev 80 fa-2 0.28771
fa-model-7b ARC-easy-dev 300 fa-1 0.25752
fa-model-7b ARC-easy-dev 2 fa-1 0.24035



model dataset max_token prompt score
base-model-7b ARC-challenge-dev 80 en-2 0.37123
base-model-7b ARC-challenge-dev 2 en-2 0.36789
base-model-7b ARC-challenge-dev 2 en-1 0.35451
base-model-7b ARC-challenge-dev 80 en-1 0.33779
model dataset max_token prompt score
--------------- -------------------- ----------- -------- ---------
fa-model-7b ARC-challenge-dev 2 en-1 0.39298
fa-model-7b ARC-challenge-dev 80 en-1 0.38421
fa-model-7b ARC-challenge-dev 2 en-2 0.31929
fa-model-7b ARC-challenge-dev 80 en-2 0.31754

How to use

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("aidal/Persian-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("aidal/Persian-Mistral-7B")
input_text = "پایتخت ایران کجاست؟"
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Training and finetuning