Sentence Similarity
sentence-transformers
PyTorch
English
mpnet
feature-extraction
Inference Endpoints
Utente
Push the entire model
fa2c80e
|
raw
history blame
4.94 kB
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
datasets:
- quora
- embedding-data/WikiAnswers
- flax-sentence-embeddings/stackexchange_xml
license: cc-by-nc-sa-4.0
---
# All-mpnet-base-v2 model fine-tuned for questions clustering
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model is named **all-mpnet-base-questions-clustering-en** since it is a Sentence Transformers model specifically fine-tuned for a questions clustering task. Three public dataset (Quora, WikiAnswer and StackExchange) has been used to enhance the model performance specifically in mapping questions with similar meanings.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aiknowyou/all-mpnet-base-questions-clustering-en')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
The present model has been evaluated by employing a test set belonging to the WikiAnswer dataset. The evaluation results are the following:
[
{
"epoch": 1,
"cossim_accuracy": 0.9931843415744172,
"cossim_accuracy_threshold": 0.35143423080444336,
"cossim_f1": 0.9897547191636324,
"cossim_precision": 0.9913437348280885,
"cossim_recall": 0.9881707893839572,
"cossim_f1_threshold": 0.35143423080444336,
"cossim_ap": 0.9989950013637923,
"manhattan_accuracy": 0.9934042015236294,
"manhattan_accuracy_threshold": 24.160316467285156,
"manhattan_f1": 0.9900818249442103,
"manhattan_precision": 0.9920113508380628,
"manhattan_recall": 0.9881597905828264,
"manhattan_f1_threshold": 24.160316467285156,
"manhattan_ap": 0.9990576126715013,
"euclidean_accuracy": 0.9931843415744172,
"euclidean_accuracy_threshold": 1.1389167308807373,
"euclidean_f1": 0.9897547191636324,
"euclidean_precision": 0.9913437348280885,
"euclidean_recall": 0.9881707893839572,
"euclidean_f1_threshold": 1.1389167308807373,
"euclidean_ap": 0.9989921332302106,
"dot_accuracy": 0.9931843415744172,
"dot_accuracy_threshold": 0.35143429040908813,
"dot_f1": 0.9897547191636324,
"dot_precision": 0.9913437348280885,
"dot_recall": 0.9881707893839572,
"dot_f1_threshold": 0.35143429040908813,
"dot_ap": 0.9989933009226604
}
]
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 34123 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 51184 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss`
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Contribution
Thanks to [@tradicio](https://huggingface.co/tradicio) for adding this model.
## License
This work is licensed under a
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].
[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png