|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
language: en |
|
datasets: |
|
- quora |
|
- embedding-data/WikiAnswers |
|
- flax-sentence-embeddings/stackexchange_xml |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
# All-mpnet-base-v2 model fine-tuned for questions clustering |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
This model is named **all-mpnet-base-questions-clustering-en** since it is a Sentence Transformers model specifically fine-tuned for a questions clustering task. Three public dataset (Quora, WikiAnswer and StackExchange) has been used to enhance the model performance specifically in mapping questions with similar meanings. |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('aiknowyou/all-mpnet-base-questions-clustering-en') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
The present model has been evaluated by employing a test set belonging to the WikiAnswer dataset. The evaluation results are the following: |
|
|
|
[ |
|
{ |
|
"epoch": 1, |
|
"cossim_accuracy": 0.9931843415744172, |
|
"cossim_accuracy_threshold": 0.35143423080444336, |
|
"cossim_f1": 0.9897547191636324, |
|
"cossim_precision": 0.9913437348280885, |
|
"cossim_recall": 0.9881707893839572, |
|
"cossim_f1_threshold": 0.35143423080444336, |
|
"cossim_ap": 0.9989950013637923, |
|
"manhattan_accuracy": 0.9934042015236294, |
|
"manhattan_accuracy_threshold": 24.160316467285156, |
|
"manhattan_f1": 0.9900818249442103, |
|
"manhattan_precision": 0.9920113508380628, |
|
"manhattan_recall": 0.9881597905828264, |
|
"manhattan_f1_threshold": 24.160316467285156, |
|
"manhattan_ap": 0.9990576126715013, |
|
"euclidean_accuracy": 0.9931843415744172, |
|
"euclidean_accuracy_threshold": 1.1389167308807373, |
|
"euclidean_f1": 0.9897547191636324, |
|
"euclidean_precision": 0.9913437348280885, |
|
"euclidean_recall": 0.9881707893839572, |
|
"euclidean_f1_threshold": 1.1389167308807373, |
|
"euclidean_ap": 0.9989921332302106, |
|
"dot_accuracy": 0.9931843415744172, |
|
"dot_accuracy_threshold": 0.35143429040908813, |
|
"dot_f1": 0.9897547191636324, |
|
"dot_precision": 0.9913437348280885, |
|
"dot_recall": 0.9881707893839572, |
|
"dot_f1_threshold": 0.35143429040908813, |
|
"dot_ap": 0.9989933009226604 |
|
} |
|
] |
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 34123 with parameters: |
|
``` |
|
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 51184 with parameters: |
|
``` |
|
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 2, |
|
"evaluation_steps": 0, |
|
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 1000, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Contribution |
|
|
|
Thanks to [@tradicio](https://huggingface.co/tradicio) for adding this model. |
|
|
|
## License |
|
|
|
This work is licensed under a |
|
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. |
|
|
|
[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] |
|
|
|
[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ |
|
[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png |
|
|