File size: 4,184 Bytes
2f3d323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner-2
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1791
- Precision: 0.5224
- Recall: 0.6222
- F1: 0.5680
- Accuracy: 0.9631
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 29 | 0.2584 | 0.0 | 0.0 | 0.0 | 0.9365 |
| No log | 2.0 | 58 | 0.2386 | 0.1364 | 0.0133 | 0.0243 | 0.9458 |
| No log | 3.0 | 87 | 0.2312 | 0.2368 | 0.04 | 0.0684 | 0.9466 |
| No log | 4.0 | 116 | 0.1806 | 0.2809 | 0.2222 | 0.2481 | 0.9422 |
| No log | 5.0 | 145 | 0.1446 | 0.4453 | 0.2711 | 0.3370 | 0.9558 |
| No log | 6.0 | 174 | 0.1575 | 0.3778 | 0.3022 | 0.3358 | 0.9493 |
| No log | 7.0 | 203 | 0.1255 | 0.5081 | 0.4178 | 0.4585 | 0.9601 |
| No log | 8.0 | 232 | 0.1290 | 0.4599 | 0.4844 | 0.4719 | 0.9596 |
| No log | 9.0 | 261 | 0.1383 | 0.4844 | 0.4844 | 0.4844 | 0.9597 |
| No log | 10.0 | 290 | 0.1534 | 0.4313 | 0.6133 | 0.5064 | 0.9519 |
| No log | 11.0 | 319 | 0.1575 | 0.4423 | 0.6133 | 0.5140 | 0.9560 |
| No log | 12.0 | 348 | 0.1437 | 0.5888 | 0.5156 | 0.5498 | 0.9670 |
| No log | 13.0 | 377 | 0.1605 | 0.5 | 0.5911 | 0.5418 | 0.9589 |
| No log | 14.0 | 406 | 0.1529 | 0.5459 | 0.5289 | 0.5372 | 0.9640 |
| No log | 15.0 | 435 | 0.1569 | 0.5097 | 0.5867 | 0.5455 | 0.9618 |
| No log | 16.0 | 464 | 0.1656 | 0.4980 | 0.5644 | 0.5292 | 0.9607 |
| No log | 17.0 | 493 | 0.1602 | 0.5583 | 0.5956 | 0.5763 | 0.9622 |
| 0.0843 | 18.0 | 522 | 0.1767 | 0.4897 | 0.6356 | 0.5532 | 0.9589 |
| 0.0843 | 19.0 | 551 | 0.1642 | 0.5551 | 0.6044 | 0.5787 | 0.9641 |
| 0.0843 | 20.0 | 580 | 0.1635 | 0.6418 | 0.5733 | 0.6056 | 0.9679 |
| 0.0843 | 21.0 | 609 | 0.1706 | 0.5423 | 0.6267 | 0.5814 | 0.9635 |
| 0.0843 | 22.0 | 638 | 0.1691 | 0.5437 | 0.6089 | 0.5744 | 0.9638 |
| 0.0843 | 23.0 | 667 | 0.1743 | 0.5357 | 0.6 | 0.5660 | 0.9631 |
| 0.0843 | 24.0 | 696 | 0.1800 | 0.5176 | 0.6533 | 0.5776 | 0.9627 |
| 0.0843 | 25.0 | 725 | 0.1789 | 0.5 | 0.6 | 0.5455 | 0.9620 |
| 0.0843 | 26.0 | 754 | 0.1754 | 0.5388 | 0.5867 | 0.5617 | 0.9638 |
| 0.0843 | 27.0 | 783 | 0.1797 | 0.5164 | 0.6311 | 0.5680 | 0.9627 |
| 0.0843 | 28.0 | 812 | 0.1816 | 0.5321 | 0.6267 | 0.5755 | 0.9633 |
| 0.0843 | 29.0 | 841 | 0.1793 | 0.5222 | 0.6267 | 0.5697 | 0.9631 |
| 0.0843 | 30.0 | 870 | 0.1791 | 0.5224 | 0.6222 | 0.5680 | 0.9631 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|