A newer version of this model is available: aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct

Llama3 8B CPT SEA-Lionv2.1 Instruct

SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.

Llama3 8B CPT SEA-Lionv2.1 Instruct is a multilingual model which has been fine-tuned with around 100,000 English instruction-completion pairs alongside a smaller pool of around 50,000 instruction-completion pairs from other ASEAN languages, such as Indonesian, Thai and Vietnamese. These instructions have been carefully curated and rewritten to ensure the model was trained on truly open, commercially permissive and high quality datasets.

Llama3 8B CPT SEA-Lionv2.1 Instruct has undergone additional supervised fine-tuning and alignment compared to the now deprecated Llama3 8B CPT SEA-Lionv2 Instruct. These improvements have increased the model's capabilities in chat interactions and its ability to follow instructions accurately.

SEA-LION stands for Southeast Asian Languages In One Network.

  • Developed by: Products Pillar, AI Singapore
  • Funded by: Singapore NRF
  • Model type: Decoder
  • Languages supported: English, Indonesian, Thai, Vietnamese, Tamil
  • License: Llama3 Community License

Model Details

Model Description

We performed instruction tuning in English and also in ASEAN languages such as Indonesian, Thai and Vietnamese on our continued pre-trained Llama3 CPT 8B SEA-Lionv2, a decoder model using the Llama3 architecture, to create Llama3 8B SEA-Lionv2.1 Instruct.

The model has a context length of 8192.

Benchmark Performance

We evaluated Llama3 8B SEA-Lionv2.1 Instruct on both general language capabilities and instruction-following capabilities.

General Language Capabilities

For the evaluation of general language capabilities, we employed the BHASA evaluation benchmark across a variety of tasks. These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarization (Summ), Causal Reasoning (Causal) and Natural Language Inference (NLI).

Note: BHASA is implemented following a strict answer format, and only spaces and punctuations are cleaned. For tasks where options are provided, the answer should only include one of the pre-defined options, nothing else. If the model continues to generate more tokens (e.g. to explain its answer), it will be considered to be a wrong response. For the F1 score metric (as used in Sentiment Analysis and Toxicity Detection), all answers that do not fall under the pre-defined labels will be treated as a separate label (to mark it as a wrong answer) and included in the calculations so that the model is penalized for not generating one of the pre-defined labels.

The evaluation was done zero-shot with native prompts and only a sample of 100-1000 instances for each dataset was used as per the setting described in the paper.

Instruction-following Capabilities

Since LLama3 8B SEA-Lionv2.1 is an instruction-following model, we also evaluated it on instruction-following capabilities with two datasets, IFEval and MT-Bench.

As these two datasets were originally in English, the linguists and native speakers in the team worked together to filter, localize and translate the datasets into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.

IFEval

IFEval evaluates a model's ability to adhere to constraints provided in the prompt, for example beginning a response with a specific word/phrase or answering with a certain number of sections. The metric used is accuracy normalized by language (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).

MT-Bench

MT-Bench evaluates a model's ability to engage in multi-turn (2 turns) conversations and respond in ways that align with human needs. We use gpt-4-1106-preview as the judge model and compare against gpt-3.5-turbo-0125 as the baseline model. The metric used is the weighted win rate against the baseline model (i.e. average win rate across each category (Math, Reasoning, STEM, Humanities, Roleplay, Writing, Extraction)). A tie is given a score of 0.5.

For more details on Llama3 8B CPT SEA-Lionv2.1 Instruct benchmark performance, please refer to the SEA HELM leaderboard, https://leaderboard.sea-lion.ai/

Usage

SEA-LION can be run using the πŸ€— Transformers library

# Please use transformers==4.43.2

import transformers
import torch

model_id = "aisingapore/llama3-8b-cpt-SEA-Lionv2.1-instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)
messages = [
    {"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])

Accessing Older Revisions

Huggingface provides support for the revision parameter, allowing users to access specific versions of models. This can be used to retrieve the original llama3-8b-cpt-SEA-Lionv2-instruct model with the tag "v2.0.0".

# Please use transformers==4.43.2

import transformers
import torch

model_id = "aisingapore/llama3-8b-cpt-SEA-Lionv2.1-instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    revision="v2.0.0", # Specify the revision here. Initial release is at "v2.0.0".
    device_map="auto",
)
messages = [
    {"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
]

outputs = pipeline(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])

Caveats

It is important for users to be aware that our model exhibits certain limitations that warrant consideration. Like many LLMs, the model can hallucinate and occasionally generates irrelevant content, introducing fictional elements that are not grounded in the provided context. Users should also exercise caution in interpreting and validating the model's responses due to the potential inconsistencies in its reasoning.

Limitations

Safety

Current SEA-LION models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.

Technical Specifications

Fine-Tuning Details

The Llama3 8B CPT SEA-Lionv2.1 Instruct was fine-tuned using 8x A100-40GB using parameter efficient fine tuning in the form of LoRA.

Data

Llama3 8B CPT SEA-Lionv2.1 Instruct was trained on a wide range of instructions that were manually and stringently verified by our team. A large portion of the effort was dedicated to ensuring that each instruction-completion pair that the model sees is of high quality and any errors were corrected and rewritten by native speakers or else dropped from our mix.

In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.

Link to dataset: coming soon

Call for Contributions

We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of SEA-LION. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Southeast Asian languages. Join us in shaping the future of SEA-LION by sharing your expertise and insights to make these models more accessible, accurate, and versatile. Please check out our GitHub for further information on the call for contributions.

The Team

Cheng Nicholas, Choa Esther, Huang Yuli, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Li Yier, Liu Bing Jie Darius, Lovenia Holy, Montalan Jann Railey, Ng Boon Cheong Raymond, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Brandon, Ong Tat-Wee David, Ong Zhi Hao, Rengarajan Hamsawardhini, Siow Bryan, Susanto Yosephine, Tai Ngee Chia, Tan Choon Meng, Teo Eng Sipp Leslie, Teo Wei Yi, Tjhi William, Teng Walter, Yeo Yeow Tong, Yong Xianbin

Acknowledgements

AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.

Contact

For more info, please contact us using this SEA-LION Inquiry Form

Link to SEA-LION's GitHub repository

Disclaimer

This is the repository for the commercial instruction-tuned model. The model has not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claims, damages, or other liabilities arising from the use of the released weights and codes.

Downloads last month
7,608
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct

Finetuned
(1)
this model
Adapters
171 models
Finetunes
8 models
Quantizations
15 models

Spaces using aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct 7

Collection including aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct