File size: 24,325 Bytes
a839fef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-mpnet-base-v2
metrics:
- accuracy
widget:
- text: travel book a train ticket
- text: how much is the average house
- text: do i need a jacket
- text: i like the songs of yeshudas please play it
- text: tell me the current time
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7743480574773816
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 35 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alarm_query | <ul><li>'do i have any alarms set for six am tomorrow'</li><li>'what is the wake up time for my alarm i have set for the flight this weekend'</li><li>'please tell me what alarms are on'</li></ul> |
| alarm_set | <ul><li>'set an alarm for six thirty am'</li><li>'add an alarm for tomorrow morning at six am'</li><li>'wake me up at five am'</li></ul> |
| audio_volume_mute | <ul><li>'can you please stop speaking'</li><li>'turn off sound'</li><li>'shut down the sound'</li></ul> |
| calendar_query | <ul><li>'how long will my lunch meeting be on tuesday'</li><li>'what time is my doctor appointment on march thirty first'</li><li>'what days do i have booked'</li></ul> |
| calendar_remove | <ul><li>'clear everything off my calendar for the rest of the year'</li><li>'please clear my calendar'</li><li>'remove from my calendar meeting at nine am'</li></ul> |
| calendar_set | <ul><li>'new event'</li><li>'remind me of the event in my calendar'</li><li>"mark april twenty as my brother's birthday"</li></ul> |
| cooking_recipe | <ul><li>'tell me the recipe of'</li><li>'how is rice prepared'</li><li>'what ingredient can be used instead of saffron'</li></ul> |
| datetime_query | <ul><li>'what is the time in canada now'</li><li>"what's the time in australia"</li><li>'display the local time of london at this moment'</li></ul> |
| email_query | <ul><li>'do i have any unread emails'</li><li>'what about new mail'</li><li>'olly do i have any new emails'</li></ul> |
| email_sendemail | <ul><li>'dictate email'</li><li>'reply an email to jason that i will not come tonight'</li><li>'please send an email to cassy who is there on my family and friend list'</li></ul> |
| general_quirky | <ul><li>'where was will ferrell seen last night'</li><li>'do you think i should go to the theater today'</li><li>'what is the best chocolate chip cookies recipe'</li></ul> |
| iot_coffee | <ul><li>'i need a drink'</li><li>'please activate my coffee pot for me'</li><li>'prepare a cup of coffee for me'</li></ul> |
| iot_hue_lightchange | <ul><li>'please make the lights natural'</li><li>'make the room light blue'</li><li>'hey olly chance the current light settings'</li></ul> |
| iot_hue_lightoff | <ul><li>'siri please turn the lights off in the bathroom'</li><li>'turn my bedroom lights off'</li><li>'no lights in the kitchen'</li></ul> |
| lists_createoradd | <ul><li>'add business contacts to contact list'</li><li>'please create a new list for me'</li><li>"i want to make this week's shopping list"</li></ul> |
| lists_query | <ul><li>'give me all available lists'</li><li>'give me the details on purchase order'</li><li>'find the list'</li></ul> |
| lists_remove | <ul><li>'replace'</li><li>"delete my to do's for this week"</li><li>'get rid of tax list from nineteen ninety'</li></ul> |
| music_likeness | <ul><li>'store opinion on song'</li><li>'are there any upcoming concerts by'</li><li>'enter song suggestion'</li></ul> |
| music_query | <ul><li>'is the song by shakira'</li><li>'which film the music comes from what is the name of the music'</li><li>'which song is this one'</li></ul> |
| news_query | <ul><li>'news articles on a particular subject'</li><li>'get me match highlights'</li><li>'show me the latest news from the guardian'</li></ul> |
| play_audiobook | <ul><li>'continue the last chapter of the audio book i was listening to'</li><li>'open davinci code audiobook'</li><li>'resume the playback of a child called it'</li></ul> |
| play_game | <ul><li>'bring up papa pear saga'</li><li>'play ping pong'</li><li>'play racing'</li></ul> |
| play_music | <ul><li>'play mf doom anything'</li><li>'play only all music released between the year one thousand nine hundred and ninety and two thousand'</li><li>'nobody knows'</li></ul> |
| play_podcasts | <ul><li>'play all order of the green hand from previous week'</li><li>'i want to see the next podcast available'</li><li>"search for podcasts that cover men's issues"</li></ul> |
| play_radio | <ul><li>'can you turn on the radio'</li><li>'play country radio'</li><li>'tune to classic hits'</li></ul> |
| qa_currency | <ul><li>'let me know about the exchange rate of rupee to dirham'</li><li>'how much is one dollar in pounds'</li><li>'what is the most current exchange rate in china'</li></ul> |
| qa_definition | <ul><li>'define elaborate'</li><li>'look up the definition of blunder'</li><li>'give details of rock sand'</li></ul> |
| qa_factoid | <ul><li>'where are the rocky mountains'</li><li>'what is the population of new york'</li><li>'where is new zealand located on a map'</li></ul> |
| recommendation_events | <ul><li>'are there any fun events in la today'</li><li>"what's happening around me"</li><li>'are there any crafts fairs happening in this area'</li></ul> |
| recommendation_locations | <ul><li>'what is the nearest pizza shop'</li><li>'please look up local restaurants that are open now'</li><li>'tell me what clothing stores are within five miles of me'</li></ul> |
| social_post | <ul><li>"tweet at united airlines i'm angry you lost my bags"</li><li>'send a funny message to all of my friends'</li><li>'tweet my current location'</li></ul> |
| takeaway_query | <ul><li>'could you please confirm if paradise does takeaway'</li><li>"i've canceled the order placed at mcd did it go through"</li><li>"please find out of charley's steakhouse delivers"</li></ul> |
| transport_query | <ul><li>'directions please'</li><li>'what time does the train to place leave'</li><li>'look up the map to stores near me'</li></ul> |
| transport_ticket | <ul><li>'find me a train ticket to boston'</li><li>'can you please book train tickets for two for this friday'</li><li>'order a train ticket to boston'</li></ul> |
| weather_query | <ul><li>'will i need to shovel my driveway this morning'</li><li>'does the weather call for rain saturday'</li><li>'is there any rain in the forecast for the next week'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7743 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("aisuko/st-mpnet-v2-amazon-mi")
# Run inference
preds = model("do i need a jacket")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 6.7114 | 19 |
| Label | Training Sample Count |
|:-------------------------|:----------------------|
| alarm_query | 10 |
| alarm_set | 10 |
| audio_volume_mute | 10 |
| calendar_query | 10 |
| calendar_remove | 10 |
| calendar_set | 10 |
| cooking_recipe | 10 |
| datetime_query | 10 |
| email_query | 10 |
| email_sendemail | 10 |
| general_quirky | 10 |
| iot_coffee | 10 |
| iot_hue_lightchange | 10 |
| iot_hue_lightoff | 10 |
| lists_createoradd | 10 |
| lists_query | 10 |
| lists_remove | 10 |
| music_likeness | 10 |
| music_query | 10 |
| news_query | 10 |
| play_audiobook | 10 |
| play_game | 10 |
| play_music | 10 |
| play_podcasts | 10 |
| play_radio | 10 |
| qa_currency | 10 |
| qa_definition | 10 |
| qa_factoid | 10 |
| recommendation_events | 10 |
| recommendation_locations | 10 |
| social_post | 10 |
| takeaway_query | 10 |
| transport_query | 10 |
| transport_ticket | 10 |
| weather_query | 10 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0001 | 1 | 0.1814 | - |
| 0.0067 | 50 | 0.1542 | - |
| 0.0134 | 100 | 0.0953 | - |
| 0.0202 | 150 | 0.0991 | - |
| 0.0269 | 200 | 0.0717 | - |
| 0.0336 | 250 | 0.0653 | - |
| 0.0403 | 300 | 0.0412 | - |
| 0.0471 | 350 | 0.0534 | - |
| 0.0538 | 400 | 0.013 | - |
| 0.0605 | 450 | 0.0567 | - |
| 0.0672 | 500 | 0.0235 | - |
| 0.0739 | 550 | 0.0086 | - |
| 0.0807 | 600 | 0.0086 | - |
| 0.0874 | 650 | 0.0786 | - |
| 0.0941 | 700 | 0.0092 | - |
| 0.1008 | 750 | 0.0081 | - |
| 0.1076 | 800 | 0.0196 | - |
| 0.1143 | 850 | 0.0138 | - |
| 0.1210 | 900 | 0.0081 | - |
| 0.1277 | 950 | 0.0295 | - |
| 0.1344 | 1000 | 0.0074 | - |
| 0.1412 | 1050 | 0.0025 | - |
| 0.1479 | 1100 | 0.0036 | - |
| 0.1546 | 1150 | 0.0021 | - |
| 0.1613 | 1200 | 0.0168 | - |
| 0.1681 | 1250 | 0.0024 | - |
| 0.1748 | 1300 | 0.0039 | - |
| 0.1815 | 1350 | 0.0155 | - |
| 0.1882 | 1400 | 0.0057 | - |
| 0.1949 | 1450 | 0.0027 | - |
| 0.2017 | 1500 | 0.0018 | - |
| 0.2084 | 1550 | 0.0012 | - |
| 0.2151 | 1600 | 0.0032 | - |
| 0.2218 | 1650 | 0.0017 | - |
| 0.2286 | 1700 | 0.0012 | - |
| 0.2353 | 1750 | 0.002 | - |
| 0.2420 | 1800 | 0.0025 | - |
| 0.2487 | 1850 | 0.0014 | - |
| 0.2554 | 1900 | 0.0033 | - |
| 0.2622 | 1950 | 0.0007 | - |
| 0.2689 | 2000 | 0.0006 | - |
| 0.2756 | 2050 | 0.001 | - |
| 0.2823 | 2100 | 0.001 | - |
| 0.2891 | 2150 | 0.0007 | - |
| 0.2958 | 2200 | 0.0011 | - |
| 0.3025 | 2250 | 0.0009 | - |
| 0.3092 | 2300 | 0.0006 | - |
| 0.3159 | 2350 | 0.001 | - |
| 0.3227 | 2400 | 0.0005 | - |
| 0.3294 | 2450 | 0.0012 | - |
| 0.3361 | 2500 | 0.0005 | - |
| 0.3428 | 2550 | 0.0007 | - |
| 0.3496 | 2600 | 0.0018 | - |
| 0.3563 | 2650 | 0.0008 | - |
| 0.3630 | 2700 | 0.0009 | - |
| 0.3697 | 2750 | 0.0007 | - |
| 0.3764 | 2800 | 0.0013 | - |
| 0.3832 | 2850 | 0.0004 | - |
| 0.3899 | 2900 | 0.0005 | - |
| 0.3966 | 2950 | 0.0005 | - |
| 0.4033 | 3000 | 0.0006 | - |
| 0.4101 | 3050 | 0.0005 | - |
| 0.4168 | 3100 | 0.0004 | - |
| 0.4235 | 3150 | 0.0007 | - |
| 0.4302 | 3200 | 0.0009 | - |
| 0.4369 | 3250 | 0.0007 | - |
| 0.4437 | 3300 | 0.0007 | - |
| 0.4504 | 3350 | 0.0004 | - |
| 0.4571 | 3400 | 0.0004 | - |
| 0.4638 | 3450 | 0.0009 | - |
| 0.4706 | 3500 | 0.0006 | - |
| 0.4773 | 3550 | 0.0006 | - |
| 0.4840 | 3600 | 0.0005 | - |
| 0.4907 | 3650 | 0.0005 | - |
| 0.4974 | 3700 | 0.0003 | - |
| 0.5042 | 3750 | 0.0004 | - |
| 0.5109 | 3800 | 0.0004 | - |
| 0.5176 | 3850 | 0.0005 | - |
| 0.5243 | 3900 | 0.0007 | - |
| 0.5311 | 3950 | 0.0005 | - |
| 0.5378 | 4000 | 0.0006 | - |
| 0.5445 | 4050 | 0.0004 | - |
| 0.5512 | 4100 | 0.0006 | - |
| 0.5579 | 4150 | 0.0005 | - |
| 0.5647 | 4200 | 0.0004 | - |
| 0.5714 | 4250 | 0.0003 | - |
| 0.5781 | 4300 | 0.0003 | - |
| 0.5848 | 4350 | 0.0005 | - |
| 0.5916 | 4400 | 0.0002 | - |
| 0.5983 | 4450 | 0.0006 | - |
| 0.6050 | 4500 | 0.0004 | - |
| 0.6117 | 4550 | 0.0005 | - |
| 0.6184 | 4600 | 0.0003 | - |
| 0.6252 | 4650 | 0.0005 | - |
| 0.6319 | 4700 | 0.0007 | - |
| 0.6386 | 4750 | 0.0003 | - |
| 0.6453 | 4800 | 0.0004 | - |
| 0.6521 | 4850 | 0.0004 | - |
| 0.6588 | 4900 | 0.0004 | - |
| 0.6655 | 4950 | 0.0003 | - |
| 0.6722 | 5000 | 0.0003 | - |
| 0.6789 | 5050 | 0.0004 | - |
| 0.6857 | 5100 | 0.0003 | - |
| 0.6924 | 5150 | 0.0005 | - |
| 0.6991 | 5200 | 0.0002 | - |
| 0.7058 | 5250 | 0.0004 | - |
| 0.7126 | 5300 | 0.0003 | - |
| 0.7193 | 5350 | 0.0007 | - |
| 0.7260 | 5400 | 0.0002 | - |
| 0.7327 | 5450 | 0.0002 | - |
| 0.7394 | 5500 | 0.0005 | - |
| 0.7462 | 5550 | 0.0003 | - |
| 0.7529 | 5600 | 0.0003 | - |
| 0.7596 | 5650 | 0.0003 | - |
| 0.7663 | 5700 | 0.0004 | - |
| 0.7731 | 5750 | 0.0004 | - |
| 0.7798 | 5800 | 0.0004 | - |
| 0.7865 | 5850 | 0.0003 | - |
| 0.7932 | 5900 | 0.0003 | - |
| 0.7999 | 5950 | 0.0004 | - |
| 0.8067 | 6000 | 0.0004 | - |
| 0.8134 | 6050 | 0.0004 | - |
| 0.8201 | 6100 | 0.0003 | - |
| 0.8268 | 6150 | 0.0002 | - |
| 0.8336 | 6200 | 0.0005 | - |
| 0.8403 | 6250 | 0.0003 | - |
| 0.8470 | 6300 | 0.0003 | - |
| 0.8537 | 6350 | 0.0002 | - |
| 0.8604 | 6400 | 0.0003 | - |
| 0.8672 | 6450 | 0.0004 | - |
| 0.8739 | 6500 | 0.0002 | - |
| 0.8806 | 6550 | 0.0003 | - |
| 0.8873 | 6600 | 0.0003 | - |
| 0.8941 | 6650 | 0.0002 | - |
| 0.9008 | 6700 | 0.0002 | - |
| 0.9075 | 6750 | 0.0002 | - |
| 0.9142 | 6800 | 0.0002 | - |
| 0.9209 | 6850 | 0.0003 | - |
| 0.9277 | 6900 | 0.0002 | - |
| 0.9344 | 6950 | 0.0002 | - |
| 0.9411 | 7000 | 0.0002 | - |
| 0.9478 | 7050 | 0.0002 | - |
| 0.9546 | 7100 | 0.0002 | - |
| 0.9613 | 7150 | 0.0003 | - |
| 0.9680 | 7200 | 0.0002 | - |
| 0.9747 | 7250 | 0.0003 | - |
| 0.9814 | 7300 | 0.0002 | - |
| 0.9882 | 7350 | 0.0003 | - |
| 0.9949 | 7400 | 0.0003 | - |
| **1.0** | **7438** | **-** | **0.0755** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.3
- PyTorch: 2.1.2
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |