File size: 24,325 Bytes
a839fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-mpnet-base-v2
metrics:
- accuracy
widget:
- text: travel book a train ticket
- text: how much is the average house
- text: do i need a jacket
- text: i like the songs of yeshudas please play it
- text: tell me the current time
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7743480574773816
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 35 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label                    | Examples                                                                                                                                                                                            |
|:-------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alarm_query              | <ul><li>'do i have any alarms set for six am tomorrow'</li><li>'what is the wake up time for my alarm i have set for the flight this weekend'</li><li>'please tell me what alarms are on'</li></ul> |
| alarm_set                | <ul><li>'set an alarm for six thirty am'</li><li>'add an alarm for tomorrow morning at six am'</li><li>'wake me up at five am'</li></ul>                                                            |
| audio_volume_mute        | <ul><li>'can you please stop speaking'</li><li>'turn off sound'</li><li>'shut down the sound'</li></ul>                                                                                             |
| calendar_query           | <ul><li>'how long will my lunch meeting be on tuesday'</li><li>'what time is my doctor appointment on march thirty first'</li><li>'what days do i have booked'</li></ul>                            |
| calendar_remove          | <ul><li>'clear everything off my calendar for the rest of the year'</li><li>'please clear my calendar'</li><li>'remove from my calendar meeting at nine am'</li></ul>                               |
| calendar_set             | <ul><li>'new event'</li><li>'remind me of the event in my calendar'</li><li>"mark april twenty as my brother's birthday"</li></ul>                                                                  |
| cooking_recipe           | <ul><li>'tell me the recipe of'</li><li>'how is rice prepared'</li><li>'what ingredient can be used instead of saffron'</li></ul>                                                                   |
| datetime_query           | <ul><li>'what is the time in canada now'</li><li>"what's the time in australia"</li><li>'display the local time of london at this moment'</li></ul>                                                 |
| email_query              | <ul><li>'do i have any unread emails'</li><li>'what about new mail'</li><li>'olly do i have any new emails'</li></ul>                                                                               |
| email_sendemail          | <ul><li>'dictate email'</li><li>'reply an email to jason that i will not come tonight'</li><li>'please send an email to cassy who is there on my family and friend list'</li></ul>                  |
| general_quirky           | <ul><li>'where was will ferrell seen last night'</li><li>'do you think i should go to the theater today'</li><li>'what is the best chocolate chip cookies recipe'</li></ul>                         |
| iot_coffee               | <ul><li>'i need a drink'</li><li>'please activate my coffee pot for me'</li><li>'prepare a cup of coffee for me'</li></ul>                                                                          |
| iot_hue_lightchange      | <ul><li>'please make the lights natural'</li><li>'make the room light blue'</li><li>'hey olly chance the current light settings'</li></ul>                                                          |
| iot_hue_lightoff         | <ul><li>'siri please turn the lights off in the bathroom'</li><li>'turn my bedroom lights off'</li><li>'no lights in the kitchen'</li></ul>                                                         |
| lists_createoradd        | <ul><li>'add business contacts to contact list'</li><li>'please create a new list for me'</li><li>"i want to make this week's shopping list"</li></ul>                                              |
| lists_query              | <ul><li>'give me all available lists'</li><li>'give me the details on purchase order'</li><li>'find the list'</li></ul>                                                                             |
| lists_remove             | <ul><li>'replace'</li><li>"delete my to do's for this week"</li><li>'get rid of tax list from nineteen ninety'</li></ul>                                                                            |
| music_likeness           | <ul><li>'store opinion on song'</li><li>'are there any upcoming concerts by'</li><li>'enter song suggestion'</li></ul>                                                                              |
| music_query              | <ul><li>'is the song by shakira'</li><li>'which film the music comes from what is the name of the music'</li><li>'which song is this one'</li></ul>                                                 |
| news_query               | <ul><li>'news articles on a particular subject'</li><li>'get me match highlights'</li><li>'show me the latest news from the guardian'</li></ul>                                                     |
| play_audiobook           | <ul><li>'continue the last chapter of the audio book i was listening to'</li><li>'open davinci code audiobook'</li><li>'resume the playback of a child called it'</li></ul>                         |
| play_game                | <ul><li>'bring up papa pear saga'</li><li>'play ping pong'</li><li>'play racing'</li></ul>                                                                                                          |
| play_music               | <ul><li>'play mf doom anything'</li><li>'play only all music released between the year one thousand nine hundred and ninety and two thousand'</li><li>'nobody knows'</li></ul>                      |
| play_podcasts            | <ul><li>'play all order of the green hand from previous week'</li><li>'i want to see the next podcast available'</li><li>"search for podcasts that cover men's issues"</li></ul>                    |
| play_radio               | <ul><li>'can you turn on the radio'</li><li>'play country radio'</li><li>'tune to classic hits'</li></ul>                                                                                           |
| qa_currency              | <ul><li>'let me know about the exchange rate of rupee to dirham'</li><li>'how much is one dollar in pounds'</li><li>'what is the most current exchange rate in china'</li></ul>                     |
| qa_definition            | <ul><li>'define elaborate'</li><li>'look up the definition of blunder'</li><li>'give details of rock sand'</li></ul>                                                                                |
| qa_factoid               | <ul><li>'where are the rocky mountains'</li><li>'what is the population of new york'</li><li>'where is new zealand located on a map'</li></ul>                                                      |
| recommendation_events    | <ul><li>'are there any fun events in la today'</li><li>"what's happening around me"</li><li>'are there any crafts fairs happening in this area'</li></ul>                                           |
| recommendation_locations | <ul><li>'what is the nearest pizza shop'</li><li>'please look up local restaurants that are open now'</li><li>'tell me what clothing stores are within five miles of me'</li></ul>                  |
| social_post              | <ul><li>"tweet at united airlines i'm angry you lost my bags"</li><li>'send a funny message to all of my friends'</li><li>'tweet my current location'</li></ul>                                     |
| takeaway_query           | <ul><li>'could you please confirm if paradise does takeaway'</li><li>"i've canceled the order placed at mcd did it go through"</li><li>"please find out of charley's steakhouse delivers"</li></ul> |
| transport_query          | <ul><li>'directions please'</li><li>'what time does the train to place leave'</li><li>'look up the map to stores near me'</li></ul>                                                                 |
| transport_ticket         | <ul><li>'find me a train ticket to boston'</li><li>'can you please book train tickets for two for this friday'</li><li>'order a train ticket to boston'</li></ul>                                   |
| weather_query            | <ul><li>'will i need to shovel my driveway this morning'</li><li>'does the weather call for rain saturday'</li><li>'is there any rain in the forecast for the next week'</li></ul>                  |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7743   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("aisuko/st-mpnet-v2-amazon-mi")
# Run inference
preds = model("do i need a jacket")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 1   | 6.7114 | 19  |

| Label                    | Training Sample Count |
|:-------------------------|:----------------------|
| alarm_query              | 10                    |
| alarm_set                | 10                    |
| audio_volume_mute        | 10                    |
| calendar_query           | 10                    |
| calendar_remove          | 10                    |
| calendar_set             | 10                    |
| cooking_recipe           | 10                    |
| datetime_query           | 10                    |
| email_query              | 10                    |
| email_sendemail          | 10                    |
| general_quirky           | 10                    |
| iot_coffee               | 10                    |
| iot_hue_lightchange      | 10                    |
| iot_hue_lightoff         | 10                    |
| lists_createoradd        | 10                    |
| lists_query              | 10                    |
| lists_remove             | 10                    |
| music_likeness           | 10                    |
| music_query              | 10                    |
| news_query               | 10                    |
| play_audiobook           | 10                    |
| play_game                | 10                    |
| play_music               | 10                    |
| play_podcasts            | 10                    |
| play_radio               | 10                    |
| qa_currency              | 10                    |
| qa_definition            | 10                    |
| qa_factoid               | 10                    |
| recommendation_events    | 10                    |
| recommendation_locations | 10                    |
| social_post              | 10                    |
| takeaway_query           | 10                    |
| transport_query          | 10                    |
| transport_ticket         | 10                    |
| weather_query            | 10                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch   | Step     | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0001  | 1        | 0.1814        | -               |
| 0.0067  | 50       | 0.1542        | -               |
| 0.0134  | 100      | 0.0953        | -               |
| 0.0202  | 150      | 0.0991        | -               |
| 0.0269  | 200      | 0.0717        | -               |
| 0.0336  | 250      | 0.0653        | -               |
| 0.0403  | 300      | 0.0412        | -               |
| 0.0471  | 350      | 0.0534        | -               |
| 0.0538  | 400      | 0.013         | -               |
| 0.0605  | 450      | 0.0567        | -               |
| 0.0672  | 500      | 0.0235        | -               |
| 0.0739  | 550      | 0.0086        | -               |
| 0.0807  | 600      | 0.0086        | -               |
| 0.0874  | 650      | 0.0786        | -               |
| 0.0941  | 700      | 0.0092        | -               |
| 0.1008  | 750      | 0.0081        | -               |
| 0.1076  | 800      | 0.0196        | -               |
| 0.1143  | 850      | 0.0138        | -               |
| 0.1210  | 900      | 0.0081        | -               |
| 0.1277  | 950      | 0.0295        | -               |
| 0.1344  | 1000     | 0.0074        | -               |
| 0.1412  | 1050     | 0.0025        | -               |
| 0.1479  | 1100     | 0.0036        | -               |
| 0.1546  | 1150     | 0.0021        | -               |
| 0.1613  | 1200     | 0.0168        | -               |
| 0.1681  | 1250     | 0.0024        | -               |
| 0.1748  | 1300     | 0.0039        | -               |
| 0.1815  | 1350     | 0.0155        | -               |
| 0.1882  | 1400     | 0.0057        | -               |
| 0.1949  | 1450     | 0.0027        | -               |
| 0.2017  | 1500     | 0.0018        | -               |
| 0.2084  | 1550     | 0.0012        | -               |
| 0.2151  | 1600     | 0.0032        | -               |
| 0.2218  | 1650     | 0.0017        | -               |
| 0.2286  | 1700     | 0.0012        | -               |
| 0.2353  | 1750     | 0.002         | -               |
| 0.2420  | 1800     | 0.0025        | -               |
| 0.2487  | 1850     | 0.0014        | -               |
| 0.2554  | 1900     | 0.0033        | -               |
| 0.2622  | 1950     | 0.0007        | -               |
| 0.2689  | 2000     | 0.0006        | -               |
| 0.2756  | 2050     | 0.001         | -               |
| 0.2823  | 2100     | 0.001         | -               |
| 0.2891  | 2150     | 0.0007        | -               |
| 0.2958  | 2200     | 0.0011        | -               |
| 0.3025  | 2250     | 0.0009        | -               |
| 0.3092  | 2300     | 0.0006        | -               |
| 0.3159  | 2350     | 0.001         | -               |
| 0.3227  | 2400     | 0.0005        | -               |
| 0.3294  | 2450     | 0.0012        | -               |
| 0.3361  | 2500     | 0.0005        | -               |
| 0.3428  | 2550     | 0.0007        | -               |
| 0.3496  | 2600     | 0.0018        | -               |
| 0.3563  | 2650     | 0.0008        | -               |
| 0.3630  | 2700     | 0.0009        | -               |
| 0.3697  | 2750     | 0.0007        | -               |
| 0.3764  | 2800     | 0.0013        | -               |
| 0.3832  | 2850     | 0.0004        | -               |
| 0.3899  | 2900     | 0.0005        | -               |
| 0.3966  | 2950     | 0.0005        | -               |
| 0.4033  | 3000     | 0.0006        | -               |
| 0.4101  | 3050     | 0.0005        | -               |
| 0.4168  | 3100     | 0.0004        | -               |
| 0.4235  | 3150     | 0.0007        | -               |
| 0.4302  | 3200     | 0.0009        | -               |
| 0.4369  | 3250     | 0.0007        | -               |
| 0.4437  | 3300     | 0.0007        | -               |
| 0.4504  | 3350     | 0.0004        | -               |
| 0.4571  | 3400     | 0.0004        | -               |
| 0.4638  | 3450     | 0.0009        | -               |
| 0.4706  | 3500     | 0.0006        | -               |
| 0.4773  | 3550     | 0.0006        | -               |
| 0.4840  | 3600     | 0.0005        | -               |
| 0.4907  | 3650     | 0.0005        | -               |
| 0.4974  | 3700     | 0.0003        | -               |
| 0.5042  | 3750     | 0.0004        | -               |
| 0.5109  | 3800     | 0.0004        | -               |
| 0.5176  | 3850     | 0.0005        | -               |
| 0.5243  | 3900     | 0.0007        | -               |
| 0.5311  | 3950     | 0.0005        | -               |
| 0.5378  | 4000     | 0.0006        | -               |
| 0.5445  | 4050     | 0.0004        | -               |
| 0.5512  | 4100     | 0.0006        | -               |
| 0.5579  | 4150     | 0.0005        | -               |
| 0.5647  | 4200     | 0.0004        | -               |
| 0.5714  | 4250     | 0.0003        | -               |
| 0.5781  | 4300     | 0.0003        | -               |
| 0.5848  | 4350     | 0.0005        | -               |
| 0.5916  | 4400     | 0.0002        | -               |
| 0.5983  | 4450     | 0.0006        | -               |
| 0.6050  | 4500     | 0.0004        | -               |
| 0.6117  | 4550     | 0.0005        | -               |
| 0.6184  | 4600     | 0.0003        | -               |
| 0.6252  | 4650     | 0.0005        | -               |
| 0.6319  | 4700     | 0.0007        | -               |
| 0.6386  | 4750     | 0.0003        | -               |
| 0.6453  | 4800     | 0.0004        | -               |
| 0.6521  | 4850     | 0.0004        | -               |
| 0.6588  | 4900     | 0.0004        | -               |
| 0.6655  | 4950     | 0.0003        | -               |
| 0.6722  | 5000     | 0.0003        | -               |
| 0.6789  | 5050     | 0.0004        | -               |
| 0.6857  | 5100     | 0.0003        | -               |
| 0.6924  | 5150     | 0.0005        | -               |
| 0.6991  | 5200     | 0.0002        | -               |
| 0.7058  | 5250     | 0.0004        | -               |
| 0.7126  | 5300     | 0.0003        | -               |
| 0.7193  | 5350     | 0.0007        | -               |
| 0.7260  | 5400     | 0.0002        | -               |
| 0.7327  | 5450     | 0.0002        | -               |
| 0.7394  | 5500     | 0.0005        | -               |
| 0.7462  | 5550     | 0.0003        | -               |
| 0.7529  | 5600     | 0.0003        | -               |
| 0.7596  | 5650     | 0.0003        | -               |
| 0.7663  | 5700     | 0.0004        | -               |
| 0.7731  | 5750     | 0.0004        | -               |
| 0.7798  | 5800     | 0.0004        | -               |
| 0.7865  | 5850     | 0.0003        | -               |
| 0.7932  | 5900     | 0.0003        | -               |
| 0.7999  | 5950     | 0.0004        | -               |
| 0.8067  | 6000     | 0.0004        | -               |
| 0.8134  | 6050     | 0.0004        | -               |
| 0.8201  | 6100     | 0.0003        | -               |
| 0.8268  | 6150     | 0.0002        | -               |
| 0.8336  | 6200     | 0.0005        | -               |
| 0.8403  | 6250     | 0.0003        | -               |
| 0.8470  | 6300     | 0.0003        | -               |
| 0.8537  | 6350     | 0.0002        | -               |
| 0.8604  | 6400     | 0.0003        | -               |
| 0.8672  | 6450     | 0.0004        | -               |
| 0.8739  | 6500     | 0.0002        | -               |
| 0.8806  | 6550     | 0.0003        | -               |
| 0.8873  | 6600     | 0.0003        | -               |
| 0.8941  | 6650     | 0.0002        | -               |
| 0.9008  | 6700     | 0.0002        | -               |
| 0.9075  | 6750     | 0.0002        | -               |
| 0.9142  | 6800     | 0.0002        | -               |
| 0.9209  | 6850     | 0.0003        | -               |
| 0.9277  | 6900     | 0.0002        | -               |
| 0.9344  | 6950     | 0.0002        | -               |
| 0.9411  | 7000     | 0.0002        | -               |
| 0.9478  | 7050     | 0.0002        | -               |
| 0.9546  | 7100     | 0.0002        | -               |
| 0.9613  | 7150     | 0.0003        | -               |
| 0.9680  | 7200     | 0.0002        | -               |
| 0.9747  | 7250     | 0.0003        | -               |
| 0.9814  | 7300     | 0.0002        | -               |
| 0.9882  | 7350     | 0.0003        | -               |
| 0.9949  | 7400     | 0.0003        | -               |
| **1.0** | **7438** | **-**         | **0.0755**      |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.3
- PyTorch: 2.1.2
- Datasets: 2.18.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->