SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 35 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
alarm_query |
|
alarm_set |
|
audio_volume_mute |
|
calendar_query |
|
calendar_remove |
|
calendar_set |
|
cooking_recipe |
|
datetime_query |
|
email_query |
|
email_sendemail |
|
general_quirky |
|
iot_coffee |
|
iot_hue_lightchange |
|
iot_hue_lightoff |
|
lists_createoradd |
|
lists_query |
|
lists_remove |
|
music_likeness |
|
music_query |
|
news_query |
|
play_audiobook |
|
play_game |
|
play_music |
|
play_podcasts |
|
play_radio |
|
qa_currency |
|
qa_definition |
|
qa_factoid |
|
recommendation_events |
|
recommendation_locations |
|
social_post |
|
takeaway_query |
|
transport_query |
|
transport_ticket |
|
weather_query |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7743 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("aisuko/st-mpnet-v2-amazon-mi")
# Run inference
preds = model("do i need a jacket")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 6.7114 | 19 |
Label | Training Sample Count |
---|---|
alarm_query | 10 |
alarm_set | 10 |
audio_volume_mute | 10 |
calendar_query | 10 |
calendar_remove | 10 |
calendar_set | 10 |
cooking_recipe | 10 |
datetime_query | 10 |
email_query | 10 |
email_sendemail | 10 |
general_quirky | 10 |
iot_coffee | 10 |
iot_hue_lightchange | 10 |
iot_hue_lightoff | 10 |
lists_createoradd | 10 |
lists_query | 10 |
lists_remove | 10 |
music_likeness | 10 |
music_query | 10 |
news_query | 10 |
play_audiobook | 10 |
play_game | 10 |
play_music | 10 |
play_podcasts | 10 |
play_radio | 10 |
qa_currency | 10 |
qa_definition | 10 |
qa_factoid | 10 |
recommendation_events | 10 |
recommendation_locations | 10 |
social_post | 10 |
takeaway_query | 10 |
transport_query | 10 |
transport_ticket | 10 |
weather_query | 10 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.1814 | - |
0.0067 | 50 | 0.1542 | - |
0.0134 | 100 | 0.0953 | - |
0.0202 | 150 | 0.0991 | - |
0.0269 | 200 | 0.0717 | - |
0.0336 | 250 | 0.0653 | - |
0.0403 | 300 | 0.0412 | - |
0.0471 | 350 | 0.0534 | - |
0.0538 | 400 | 0.013 | - |
0.0605 | 450 | 0.0567 | - |
0.0672 | 500 | 0.0235 | - |
0.0739 | 550 | 0.0086 | - |
0.0807 | 600 | 0.0086 | - |
0.0874 | 650 | 0.0786 | - |
0.0941 | 700 | 0.0092 | - |
0.1008 | 750 | 0.0081 | - |
0.1076 | 800 | 0.0196 | - |
0.1143 | 850 | 0.0138 | - |
0.1210 | 900 | 0.0081 | - |
0.1277 | 950 | 0.0295 | - |
0.1344 | 1000 | 0.0074 | - |
0.1412 | 1050 | 0.0025 | - |
0.1479 | 1100 | 0.0036 | - |
0.1546 | 1150 | 0.0021 | - |
0.1613 | 1200 | 0.0168 | - |
0.1681 | 1250 | 0.0024 | - |
0.1748 | 1300 | 0.0039 | - |
0.1815 | 1350 | 0.0155 | - |
0.1882 | 1400 | 0.0057 | - |
0.1949 | 1450 | 0.0027 | - |
0.2017 | 1500 | 0.0018 | - |
0.2084 | 1550 | 0.0012 | - |
0.2151 | 1600 | 0.0032 | - |
0.2218 | 1650 | 0.0017 | - |
0.2286 | 1700 | 0.0012 | - |
0.2353 | 1750 | 0.002 | - |
0.2420 | 1800 | 0.0025 | - |
0.2487 | 1850 | 0.0014 | - |
0.2554 | 1900 | 0.0033 | - |
0.2622 | 1950 | 0.0007 | - |
0.2689 | 2000 | 0.0006 | - |
0.2756 | 2050 | 0.001 | - |
0.2823 | 2100 | 0.001 | - |
0.2891 | 2150 | 0.0007 | - |
0.2958 | 2200 | 0.0011 | - |
0.3025 | 2250 | 0.0009 | - |
0.3092 | 2300 | 0.0006 | - |
0.3159 | 2350 | 0.001 | - |
0.3227 | 2400 | 0.0005 | - |
0.3294 | 2450 | 0.0012 | - |
0.3361 | 2500 | 0.0005 | - |
0.3428 | 2550 | 0.0007 | - |
0.3496 | 2600 | 0.0018 | - |
0.3563 | 2650 | 0.0008 | - |
0.3630 | 2700 | 0.0009 | - |
0.3697 | 2750 | 0.0007 | - |
0.3764 | 2800 | 0.0013 | - |
0.3832 | 2850 | 0.0004 | - |
0.3899 | 2900 | 0.0005 | - |
0.3966 | 2950 | 0.0005 | - |
0.4033 | 3000 | 0.0006 | - |
0.4101 | 3050 | 0.0005 | - |
0.4168 | 3100 | 0.0004 | - |
0.4235 | 3150 | 0.0007 | - |
0.4302 | 3200 | 0.0009 | - |
0.4369 | 3250 | 0.0007 | - |
0.4437 | 3300 | 0.0007 | - |
0.4504 | 3350 | 0.0004 | - |
0.4571 | 3400 | 0.0004 | - |
0.4638 | 3450 | 0.0009 | - |
0.4706 | 3500 | 0.0006 | - |
0.4773 | 3550 | 0.0006 | - |
0.4840 | 3600 | 0.0005 | - |
0.4907 | 3650 | 0.0005 | - |
0.4974 | 3700 | 0.0003 | - |
0.5042 | 3750 | 0.0004 | - |
0.5109 | 3800 | 0.0004 | - |
0.5176 | 3850 | 0.0005 | - |
0.5243 | 3900 | 0.0007 | - |
0.5311 | 3950 | 0.0005 | - |
0.5378 | 4000 | 0.0006 | - |
0.5445 | 4050 | 0.0004 | - |
0.5512 | 4100 | 0.0006 | - |
0.5579 | 4150 | 0.0005 | - |
0.5647 | 4200 | 0.0004 | - |
0.5714 | 4250 | 0.0003 | - |
0.5781 | 4300 | 0.0003 | - |
0.5848 | 4350 | 0.0005 | - |
0.5916 | 4400 | 0.0002 | - |
0.5983 | 4450 | 0.0006 | - |
0.6050 | 4500 | 0.0004 | - |
0.6117 | 4550 | 0.0005 | - |
0.6184 | 4600 | 0.0003 | - |
0.6252 | 4650 | 0.0005 | - |
0.6319 | 4700 | 0.0007 | - |
0.6386 | 4750 | 0.0003 | - |
0.6453 | 4800 | 0.0004 | - |
0.6521 | 4850 | 0.0004 | - |
0.6588 | 4900 | 0.0004 | - |
0.6655 | 4950 | 0.0003 | - |
0.6722 | 5000 | 0.0003 | - |
0.6789 | 5050 | 0.0004 | - |
0.6857 | 5100 | 0.0003 | - |
0.6924 | 5150 | 0.0005 | - |
0.6991 | 5200 | 0.0002 | - |
0.7058 | 5250 | 0.0004 | - |
0.7126 | 5300 | 0.0003 | - |
0.7193 | 5350 | 0.0007 | - |
0.7260 | 5400 | 0.0002 | - |
0.7327 | 5450 | 0.0002 | - |
0.7394 | 5500 | 0.0005 | - |
0.7462 | 5550 | 0.0003 | - |
0.7529 | 5600 | 0.0003 | - |
0.7596 | 5650 | 0.0003 | - |
0.7663 | 5700 | 0.0004 | - |
0.7731 | 5750 | 0.0004 | - |
0.7798 | 5800 | 0.0004 | - |
0.7865 | 5850 | 0.0003 | - |
0.7932 | 5900 | 0.0003 | - |
0.7999 | 5950 | 0.0004 | - |
0.8067 | 6000 | 0.0004 | - |
0.8134 | 6050 | 0.0004 | - |
0.8201 | 6100 | 0.0003 | - |
0.8268 | 6150 | 0.0002 | - |
0.8336 | 6200 | 0.0005 | - |
0.8403 | 6250 | 0.0003 | - |
0.8470 | 6300 | 0.0003 | - |
0.8537 | 6350 | 0.0002 | - |
0.8604 | 6400 | 0.0003 | - |
0.8672 | 6450 | 0.0004 | - |
0.8739 | 6500 | 0.0002 | - |
0.8806 | 6550 | 0.0003 | - |
0.8873 | 6600 | 0.0003 | - |
0.8941 | 6650 | 0.0002 | - |
0.9008 | 6700 | 0.0002 | - |
0.9075 | 6750 | 0.0002 | - |
0.9142 | 6800 | 0.0002 | - |
0.9209 | 6850 | 0.0003 | - |
0.9277 | 6900 | 0.0002 | - |
0.9344 | 6950 | 0.0002 | - |
0.9411 | 7000 | 0.0002 | - |
0.9478 | 7050 | 0.0002 | - |
0.9546 | 7100 | 0.0002 | - |
0.9613 | 7150 | 0.0003 | - |
0.9680 | 7200 | 0.0002 | - |
0.9747 | 7250 | 0.0003 | - |
0.9814 | 7300 | 0.0002 | - |
0.9882 | 7350 | 0.0003 | - |
0.9949 | 7400 | 0.0003 | - |
1.0 | 7438 | - | 0.0755 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.3
- PyTorch: 2.1.2
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.