aisuko's picture
Add SetFit model
a839fef verified
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
base_model: sentence-transformers/paraphrase-mpnet-base-v2
metrics:
  - accuracy
widget:
  - text: travel book a train ticket
  - text: how much is the average house
  - text: do i need a jacket
  - text: i like the songs of yeshudas please play it
  - text: tell me the current time
pipeline_tag: text-classification
inference: true
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.7743480574773816
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
alarm_query
  • 'do i have any alarms set for six am tomorrow'
  • 'what is the wake up time for my alarm i have set for the flight this weekend'
  • 'please tell me what alarms are on'
alarm_set
  • 'set an alarm for six thirty am'
  • 'add an alarm for tomorrow morning at six am'
  • 'wake me up at five am'
audio_volume_mute
  • 'can you please stop speaking'
  • 'turn off sound'
  • 'shut down the sound'
calendar_query
  • 'how long will my lunch meeting be on tuesday'
  • 'what time is my doctor appointment on march thirty first'
  • 'what days do i have booked'
calendar_remove
  • 'clear everything off my calendar for the rest of the year'
  • 'please clear my calendar'
  • 'remove from my calendar meeting at nine am'
calendar_set
  • 'new event'
  • 'remind me of the event in my calendar'
  • "mark april twenty as my brother's birthday"
cooking_recipe
  • 'tell me the recipe of'
  • 'how is rice prepared'
  • 'what ingredient can be used instead of saffron'
datetime_query
  • 'what is the time in canada now'
  • "what's the time in australia"
  • 'display the local time of london at this moment'
email_query
  • 'do i have any unread emails'
  • 'what about new mail'
  • 'olly do i have any new emails'
email_sendemail
  • 'dictate email'
  • 'reply an email to jason that i will not come tonight'
  • 'please send an email to cassy who is there on my family and friend list'
general_quirky
  • 'where was will ferrell seen last night'
  • 'do you think i should go to the theater today'
  • 'what is the best chocolate chip cookies recipe'
iot_coffee
  • 'i need a drink'
  • 'please activate my coffee pot for me'
  • 'prepare a cup of coffee for me'
iot_hue_lightchange
  • 'please make the lights natural'
  • 'make the room light blue'
  • 'hey olly chance the current light settings'
iot_hue_lightoff
  • 'siri please turn the lights off in the bathroom'
  • 'turn my bedroom lights off'
  • 'no lights in the kitchen'
lists_createoradd
  • 'add business contacts to contact list'
  • 'please create a new list for me'
  • "i want to make this week's shopping list"
lists_query
  • 'give me all available lists'
  • 'give me the details on purchase order'
  • 'find the list'
lists_remove
  • 'replace'
  • "delete my to do's for this week"
  • 'get rid of tax list from nineteen ninety'
music_likeness
  • 'store opinion on song'
  • 'are there any upcoming concerts by'
  • 'enter song suggestion'
music_query
  • 'is the song by shakira'
  • 'which film the music comes from what is the name of the music'
  • 'which song is this one'
news_query
  • 'news articles on a particular subject'
  • 'get me match highlights'
  • 'show me the latest news from the guardian'
play_audiobook
  • 'continue the last chapter of the audio book i was listening to'
  • 'open davinci code audiobook'
  • 'resume the playback of a child called it'
play_game
  • 'bring up papa pear saga'
  • 'play ping pong'
  • 'play racing'
play_music
  • 'play mf doom anything'
  • 'play only all music released between the year one thousand nine hundred and ninety and two thousand'
  • 'nobody knows'
play_podcasts
  • 'play all order of the green hand from previous week'
  • 'i want to see the next podcast available'
  • "search for podcasts that cover men's issues"
play_radio
  • 'can you turn on the radio'
  • 'play country radio'
  • 'tune to classic hits'
qa_currency
  • 'let me know about the exchange rate of rupee to dirham'
  • 'how much is one dollar in pounds'
  • 'what is the most current exchange rate in china'
qa_definition
  • 'define elaborate'
  • 'look up the definition of blunder'
  • 'give details of rock sand'
qa_factoid
  • 'where are the rocky mountains'
  • 'what is the population of new york'
  • 'where is new zealand located on a map'
recommendation_events
  • 'are there any fun events in la today'
  • "what's happening around me"
  • 'are there any crafts fairs happening in this area'
recommendation_locations
  • 'what is the nearest pizza shop'
  • 'please look up local restaurants that are open now'
  • 'tell me what clothing stores are within five miles of me'
social_post
  • "tweet at united airlines i'm angry you lost my bags"
  • 'send a funny message to all of my friends'
  • 'tweet my current location'
takeaway_query
  • 'could you please confirm if paradise does takeaway'
  • "i've canceled the order placed at mcd did it go through"
  • "please find out of charley's steakhouse delivers"
transport_query
  • 'directions please'
  • 'what time does the train to place leave'
  • 'look up the map to stores near me'
transport_ticket
  • 'find me a train ticket to boston'
  • 'can you please book train tickets for two for this friday'
  • 'order a train ticket to boston'
weather_query
  • 'will i need to shovel my driveway this morning'
  • 'does the weather call for rain saturday'
  • 'is there any rain in the forecast for the next week'

Evaluation

Metrics

Label Accuracy
all 0.7743

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("aisuko/st-mpnet-v2-amazon-mi")
# Run inference
preds = model("do i need a jacket")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 6.7114 19
Label Training Sample Count
alarm_query 10
alarm_set 10
audio_volume_mute 10
calendar_query 10
calendar_remove 10
calendar_set 10
cooking_recipe 10
datetime_query 10
email_query 10
email_sendemail 10
general_quirky 10
iot_coffee 10
iot_hue_lightchange 10
iot_hue_lightoff 10
lists_createoradd 10
lists_query 10
lists_remove 10
music_likeness 10
music_query 10
news_query 10
play_audiobook 10
play_game 10
play_music 10
play_podcasts 10
play_radio 10
qa_currency 10
qa_definition 10
qa_factoid 10
recommendation_events 10
recommendation_locations 10
social_post 10
takeaway_query 10
transport_query 10
transport_ticket 10
weather_query 10

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0001 1 0.1814 -
0.0067 50 0.1542 -
0.0134 100 0.0953 -
0.0202 150 0.0991 -
0.0269 200 0.0717 -
0.0336 250 0.0653 -
0.0403 300 0.0412 -
0.0471 350 0.0534 -
0.0538 400 0.013 -
0.0605 450 0.0567 -
0.0672 500 0.0235 -
0.0739 550 0.0086 -
0.0807 600 0.0086 -
0.0874 650 0.0786 -
0.0941 700 0.0092 -
0.1008 750 0.0081 -
0.1076 800 0.0196 -
0.1143 850 0.0138 -
0.1210 900 0.0081 -
0.1277 950 0.0295 -
0.1344 1000 0.0074 -
0.1412 1050 0.0025 -
0.1479 1100 0.0036 -
0.1546 1150 0.0021 -
0.1613 1200 0.0168 -
0.1681 1250 0.0024 -
0.1748 1300 0.0039 -
0.1815 1350 0.0155 -
0.1882 1400 0.0057 -
0.1949 1450 0.0027 -
0.2017 1500 0.0018 -
0.2084 1550 0.0012 -
0.2151 1600 0.0032 -
0.2218 1650 0.0017 -
0.2286 1700 0.0012 -
0.2353 1750 0.002 -
0.2420 1800 0.0025 -
0.2487 1850 0.0014 -
0.2554 1900 0.0033 -
0.2622 1950 0.0007 -
0.2689 2000 0.0006 -
0.2756 2050 0.001 -
0.2823 2100 0.001 -
0.2891 2150 0.0007 -
0.2958 2200 0.0011 -
0.3025 2250 0.0009 -
0.3092 2300 0.0006 -
0.3159 2350 0.001 -
0.3227 2400 0.0005 -
0.3294 2450 0.0012 -
0.3361 2500 0.0005 -
0.3428 2550 0.0007 -
0.3496 2600 0.0018 -
0.3563 2650 0.0008 -
0.3630 2700 0.0009 -
0.3697 2750 0.0007 -
0.3764 2800 0.0013 -
0.3832 2850 0.0004 -
0.3899 2900 0.0005 -
0.3966 2950 0.0005 -
0.4033 3000 0.0006 -
0.4101 3050 0.0005 -
0.4168 3100 0.0004 -
0.4235 3150 0.0007 -
0.4302 3200 0.0009 -
0.4369 3250 0.0007 -
0.4437 3300 0.0007 -
0.4504 3350 0.0004 -
0.4571 3400 0.0004 -
0.4638 3450 0.0009 -
0.4706 3500 0.0006 -
0.4773 3550 0.0006 -
0.4840 3600 0.0005 -
0.4907 3650 0.0005 -
0.4974 3700 0.0003 -
0.5042 3750 0.0004 -
0.5109 3800 0.0004 -
0.5176 3850 0.0005 -
0.5243 3900 0.0007 -
0.5311 3950 0.0005 -
0.5378 4000 0.0006 -
0.5445 4050 0.0004 -
0.5512 4100 0.0006 -
0.5579 4150 0.0005 -
0.5647 4200 0.0004 -
0.5714 4250 0.0003 -
0.5781 4300 0.0003 -
0.5848 4350 0.0005 -
0.5916 4400 0.0002 -
0.5983 4450 0.0006 -
0.6050 4500 0.0004 -
0.6117 4550 0.0005 -
0.6184 4600 0.0003 -
0.6252 4650 0.0005 -
0.6319 4700 0.0007 -
0.6386 4750 0.0003 -
0.6453 4800 0.0004 -
0.6521 4850 0.0004 -
0.6588 4900 0.0004 -
0.6655 4950 0.0003 -
0.6722 5000 0.0003 -
0.6789 5050 0.0004 -
0.6857 5100 0.0003 -
0.6924 5150 0.0005 -
0.6991 5200 0.0002 -
0.7058 5250 0.0004 -
0.7126 5300 0.0003 -
0.7193 5350 0.0007 -
0.7260 5400 0.0002 -
0.7327 5450 0.0002 -
0.7394 5500 0.0005 -
0.7462 5550 0.0003 -
0.7529 5600 0.0003 -
0.7596 5650 0.0003 -
0.7663 5700 0.0004 -
0.7731 5750 0.0004 -
0.7798 5800 0.0004 -
0.7865 5850 0.0003 -
0.7932 5900 0.0003 -
0.7999 5950 0.0004 -
0.8067 6000 0.0004 -
0.8134 6050 0.0004 -
0.8201 6100 0.0003 -
0.8268 6150 0.0002 -
0.8336 6200 0.0005 -
0.8403 6250 0.0003 -
0.8470 6300 0.0003 -
0.8537 6350 0.0002 -
0.8604 6400 0.0003 -
0.8672 6450 0.0004 -
0.8739 6500 0.0002 -
0.8806 6550 0.0003 -
0.8873 6600 0.0003 -
0.8941 6650 0.0002 -
0.9008 6700 0.0002 -
0.9075 6750 0.0002 -
0.9142 6800 0.0002 -
0.9209 6850 0.0003 -
0.9277 6900 0.0002 -
0.9344 6950 0.0002 -
0.9411 7000 0.0002 -
0.9478 7050 0.0002 -
0.9546 7100 0.0002 -
0.9613 7150 0.0003 -
0.9680 7200 0.0002 -
0.9747 7250 0.0003 -
0.9814 7300 0.0002 -
0.9882 7350 0.0003 -
0.9949 7400 0.0003 -
1.0 7438 - 0.0755
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.39.3
  • PyTorch: 2.1.2
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}