leaderboard-pr-bot's picture
Adding Evaluation Results
5c84d60 verified
|
raw
history blame
5.53 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - code
  - finetune
  - synthetic data
  - text-generation-inference
  - conversational
datasets:
  - ajibawa-2023/OpenHermes-2.5-Code-290k
model-index:
  - name: OpenHermes-2.5-Code-290k-13B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 57.34
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 80.48
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 56.53
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 52.5
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 74.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 58.3
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/OpenHermes-2.5-Code-290k-13B
          name: Open LLM Leaderboard

OpenHermes-2.5-Code-290k-13B

OpenHermes-2.5-Code-290k-13B is a state of the art Llama-2 Fine-tune, which is trained on additional code dataset. This model is trained on my existing dataset OpenHermes-2.5-Code-290k. This dataset is amalgamation of two datasets. I have used OpenHermes-2.5 a super quality dataset made avaliable by teknium. Other datset is my own Code-290k-ShareGPT. Dataset is in Vicuna/ShareGPT format. There are around 1.29 million set of conversations. I have cleaned the dataset provided by Teknium and removed metadata such as "source" & "category" etc. This dataset has primarily synthetically generated instruction and chat samples.

This model has enhanced coding capabilities besides other capabilities such as Blogging, story generation, Q&A and many more.

Training:

Entire model was trained on 4 x A100 80GB. For 2 epoch, training took 21 Days. Fschat & DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta.

This is a full fine tuned model. Links for quantized models will be updated soon.

GPTQ, GGUF, AWQ & Exllama

GPTQ: TBA

GGUF: TBA

AWQ: TBA

Exllama v2: TBA

Example Prompt:

This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation. It can generate Story, Blogs .....

Context
You are a helpful AI assistant.

USER: <prompt>
ASSISTANT:

You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .

I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.

Thank you for your love & support.

Example Output

I will update soon.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 63.33
AI2 Reasoning Challenge (25-Shot) 57.34
HellaSwag (10-Shot) 80.48
MMLU (5-Shot) 56.53
TruthfulQA (0-shot) 52.50
Winogrande (5-shot) 74.82
GSM8k (5-shot) 58.30