distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5945
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.903 | 1.0 | 113 | 1.8479 | 0.54 |
1.2132 | 2.0 | 226 | 1.2646 | 0.67 |
1.0423 | 3.0 | 339 | 1.0427 | 0.65 |
0.6681 | 4.0 | 452 | 0.8072 | 0.75 |
0.6004 | 5.0 | 565 | 0.7409 | 0.79 |
0.4083 | 6.0 | 678 | 0.6499 | 0.77 |
0.3546 | 7.0 | 791 | 0.6455 | 0.76 |
0.1782 | 8.0 | 904 | 0.6382 | 0.78 |
0.1987 | 9.0 | 1017 | 0.5699 | 0.84 |
0.1335 | 10.0 | 1130 | 0.5945 | 0.82 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.4.1+cu118
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for akakakak/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert