|
--- |
|
license: other |
|
base_model: nvidia/segformer-b0-finetuned-ade-512-512 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Segformer-MRIseg_model_Dec28 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Segformer-MRIseg_model_Dec28 |
|
|
|
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0035 |
|
- Validation Loss: 0.0096 |
|
- Epoch: 59 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 0.1321 | 0.0670 | 0 | |
|
| 0.0670 | 0.0541 | 1 | |
|
| 0.0551 | 0.0481 | 2 | |
|
| 0.0455 | 0.0458 | 3 | |
|
| 0.0393 | 0.0377 | 4 | |
|
| 0.0335 | 0.0329 | 5 | |
|
| 0.0316 | 0.0322 | 6 | |
|
| 0.0269 | 0.0255 | 7 | |
|
| 0.0218 | 0.0249 | 8 | |
|
| 0.0204 | 0.0187 | 9 | |
|
| 0.0182 | 0.0231 | 10 | |
|
| 0.0186 | 0.0244 | 11 | |
|
| 0.0166 | 0.0175 | 12 | |
|
| 0.0150 | 0.0157 | 13 | |
|
| 0.0132 | 0.0163 | 14 | |
|
| 0.0123 | 0.0161 | 15 | |
|
| 0.0111 | 0.0147 | 16 | |
|
| 0.0112 | 0.0231 | 17 | |
|
| 0.0122 | 0.0145 | 18 | |
|
| 0.0101 | 0.0134 | 19 | |
|
| 0.0094 | 0.0122 | 20 | |
|
| 0.0088 | 0.0117 | 21 | |
|
| 0.0080 | 0.0128 | 22 | |
|
| 0.0082 | 0.0140 | 23 | |
|
| 0.0074 | 0.0125 | 24 | |
|
| 0.0073 | 0.0110 | 25 | |
|
| 0.0071 | 0.0107 | 26 | |
|
| 0.0065 | 0.0111 | 27 | |
|
| 0.0073 | 0.0109 | 28 | |
|
| 0.0068 | 0.0104 | 29 | |
|
| 0.0064 | 0.0100 | 30 | |
|
| 0.0062 | 0.0098 | 31 | |
|
| 0.0065 | 0.0112 | 32 | |
|
| 0.0064 | 0.0107 | 33 | |
|
| 0.0059 | 0.0105 | 34 | |
|
| 0.0065 | 0.0107 | 35 | |
|
| 0.0058 | 0.0100 | 36 | |
|
| 0.0052 | 0.0099 | 37 | |
|
| 0.0052 | 0.0107 | 38 | |
|
| 0.0055 | 0.0123 | 39 | |
|
| 0.0052 | 0.0097 | 40 | |
|
| 0.0051 | 0.0101 | 41 | |
|
| 0.0051 | 0.0102 | 42 | |
|
| 0.0046 | 0.0105 | 43 | |
|
| 0.0048 | 0.0093 | 44 | |
|
| 0.0044 | 0.0096 | 45 | |
|
| 0.0043 | 0.0094 | 46 | |
|
| 0.0040 | 0.0119 | 47 | |
|
| 0.0041 | 0.0110 | 48 | |
|
| 0.0043 | 0.0095 | 49 | |
|
| 0.0041 | 0.0099 | 50 | |
|
| 0.0040 | 0.0097 | 51 | |
|
| 0.0041 | 0.0098 | 52 | |
|
| 0.0041 | 0.0097 | 53 | |
|
| 0.0041 | 0.0094 | 54 | |
|
| 0.0042 | 0.0097 | 55 | |
|
| 0.0038 | 0.0101 | 56 | |
|
| 0.0037 | 0.0096 | 57 | |
|
| 0.0036 | 0.0096 | 58 | |
|
| 0.0035 | 0.0096 | 59 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|