whisper-medium-lug / README.md
akera's picture
Upload tokenizer
60ce07e verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-medium
datasets:
  - generator
metrics:
  - wer
model-index:
  - name: whisper-medium-lug
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - type: wer
            value: 61.62227602905569
            name: Wer

Visualize in Weights & Biases

whisper-medium-lug

This model is a fine-tuned version of openai/whisper-medium on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2943
  • Wer: 61.6223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9437 0.025 200 0.4902 427.9661
0.4586 1.0108 400 0.3298 150.3027
0.3741 1.0357 600 0.3337 143.5835
0.2659 2.0215 800 0.2871 109.6852
0.139 3.0072 1000 0.3437 131.9613
0.1734 3.0322 1200 0.3028 170.8838
0.1072 4.018 1400 0.2943 61.6223
0.0726 5.0038 1600 0.3438 114.7094
0.0751 5.0287 1800 0.3526 73.6683
0.0635 6.0145 2000 0.3629 159.7458
0.0554 7.0003 2200 0.3854 152.1186
0.0549 7.0252 2400 0.3751 98.5472
0.0283 8.011 2600 0.3190 89.2857
0.0349 8.036 2800 0.3452 155.5085
0.0379 9.0218 3000 0.3780 109.7458
0.0316 10.0075 3200 0.3880 101.4528
0.0232 10.0325 3400 0.4144 67.7966
0.0246 11.0183 3600 0.3820 71.0654
0.0192 12.004 3800 0.4022 107.6877
0.0195 12.029 4000 0.4276 126.9976
0.013 13.0147 4200 0.4128 115.3753
0.0154 14.0005 4400 0.4371 126.6949
0.0109 14.0255 4600 0.4213 142.2518
0.0133 15.0113 4800 0.4075 170.1574
0.011 15.0363 5000 0.4454 116.1622
0.0104 16.022 5200 0.3950 79.5400
0.0079 17.0078 5400 0.4330 109.2010
0.0083 17.0328 5600 0.4308 137.5303
0.0064 18.0185 5800 0.4178 96.2470
0.0057 19.0042 6000 0.4104 99.7579
0.0076 19.0293 6200 0.4132 117.0702
0.0062 20.015 6400 0.4404 146.2470
0.0035 21.0008 6600 0.4488 128.4504
0.0045 21.0257 6800 0.4415 91.0412
0.0043 22.0115 7000 0.4477 89.5884
0.0038 22.0365 7200 0.4550 82.5666
0.0028 23.0222 7400 0.4451 77.4213
0.003 24.008 7600 0.4424 78.5109
0.0033 24.033 7800 0.4448 73.4867
0.0041 25.0188 8000 0.4455 86.4407

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.19.1