metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-medium
datasets:
- generator
metrics:
- wer
model-index:
- name: whisper-medium-lug
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: generator
type: generator
config: default
split: train
args: default
metrics:
- type: wer
value: 61.62227602905569
name: Wer
whisper-medium-lug
This model is a fine-tuned version of openai/whisper-medium on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.2943
- Wer: 61.6223
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.9437 | 0.025 | 200 | 0.4902 | 427.9661 |
0.4586 | 1.0108 | 400 | 0.3298 | 150.3027 |
0.3741 | 1.0357 | 600 | 0.3337 | 143.5835 |
0.2659 | 2.0215 | 800 | 0.2871 | 109.6852 |
0.139 | 3.0072 | 1000 | 0.3437 | 131.9613 |
0.1734 | 3.0322 | 1200 | 0.3028 | 170.8838 |
0.1072 | 4.018 | 1400 | 0.2943 | 61.6223 |
0.0726 | 5.0038 | 1600 | 0.3438 | 114.7094 |
0.0751 | 5.0287 | 1800 | 0.3526 | 73.6683 |
0.0635 | 6.0145 | 2000 | 0.3629 | 159.7458 |
0.0554 | 7.0003 | 2200 | 0.3854 | 152.1186 |
0.0549 | 7.0252 | 2400 | 0.3751 | 98.5472 |
0.0283 | 8.011 | 2600 | 0.3190 | 89.2857 |
0.0349 | 8.036 | 2800 | 0.3452 | 155.5085 |
0.0379 | 9.0218 | 3000 | 0.3780 | 109.7458 |
0.0316 | 10.0075 | 3200 | 0.3880 | 101.4528 |
0.0232 | 10.0325 | 3400 | 0.4144 | 67.7966 |
0.0246 | 11.0183 | 3600 | 0.3820 | 71.0654 |
0.0192 | 12.004 | 3800 | 0.4022 | 107.6877 |
0.0195 | 12.029 | 4000 | 0.4276 | 126.9976 |
0.013 | 13.0147 | 4200 | 0.4128 | 115.3753 |
0.0154 | 14.0005 | 4400 | 0.4371 | 126.6949 |
0.0109 | 14.0255 | 4600 | 0.4213 | 142.2518 |
0.0133 | 15.0113 | 4800 | 0.4075 | 170.1574 |
0.011 | 15.0363 | 5000 | 0.4454 | 116.1622 |
0.0104 | 16.022 | 5200 | 0.3950 | 79.5400 |
0.0079 | 17.0078 | 5400 | 0.4330 | 109.2010 |
0.0083 | 17.0328 | 5600 | 0.4308 | 137.5303 |
0.0064 | 18.0185 | 5800 | 0.4178 | 96.2470 |
0.0057 | 19.0042 | 6000 | 0.4104 | 99.7579 |
0.0076 | 19.0293 | 6200 | 0.4132 | 117.0702 |
0.0062 | 20.015 | 6400 | 0.4404 | 146.2470 |
0.0035 | 21.0008 | 6600 | 0.4488 | 128.4504 |
0.0045 | 21.0257 | 6800 | 0.4415 | 91.0412 |
0.0043 | 22.0115 | 7000 | 0.4477 | 89.5884 |
0.0038 | 22.0365 | 7200 | 0.4550 | 82.5666 |
0.0028 | 23.0222 | 7400 | 0.4451 | 77.4213 |
0.003 | 24.008 | 7600 | 0.4424 | 78.5109 |
0.0033 | 24.033 | 7800 | 0.4448 | 73.4867 |
0.0041 | 25.0188 | 8000 | 0.4455 | 86.4407 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.19.1