Edit model card

Model Card for Model ID

This model is a function calling version of google/gemma-2-2b finetuned on the Salesforce/xlam-function-calling-60k dataset.

Uploaded model

  • Developed by: akshayballal
  • License: apache-2.0
  • Finetuned from model : unsloth/gemma-2-2b-bnb-4bit

Usage

from unsloth import FastLanguageModel

max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "gemma2-2b-xlam-function-calling", # YOUR MODEL YOU USED FOR TRAINING
    max_seq_length = 1024,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference


alpaca_prompt = """Below are the tools that you have access to these tools. Use them if required.

### Tools:
{}

### Query:
{}

### Response:
{}"""

tools = [
    {
        "name": "upcoming",
        "description": "Fetches upcoming CS:GO matches data from the specified API endpoint.",
        "parameters": {
            "content_type": {
                "description": "The content type for the request, default is 'application/json'.",
                "type": "str",
                "default": "application/json",
            },
            "page": {
                "description": "The page number to retrieve, default is 1.",
                "type": "int",
                "default": "1",
            },
            "limit": {
                "description": "The number of matches to retrieve per page, default is 10.",
                "type": "int",
                "default": "10",
            },
        },
    }
]
query = """Can you fetch the upcoming CS:GO matches for page 1 with a 'text/xml' content type  and a limit of 20 matches? Also, can you fetch the upcoming matches for page 2 with the 'application/xml' content type and a limit of 15 matches?"""

FastLanguageModel.for_inference(model)

model_input = tokenizer(alpaca_prompt.format(tools, query, ""), return_tensors="pt")

output = model.generate(**input, max_new_tokens=1024, temperature = 0.0)

decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)

Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for akshayballal/gemma2-2b-xlam-function-calling

Adapter
(9)
this model

Dataset used to train akshayballal/gemma2-2b-xlam-function-calling