NEOX / tools /datasets /preprocess_data.py
akswelh's picture
Upload 251 files
d90b3a8 verified
# Copyright (c) 2024, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processing data for pretraining."""
import argparse
import multiprocessing
import os
import sys
import lm_dataformat as lmd
import numpy as np
sys.path.append(
os.path.abspath(
os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir)
)
)
import time
import tqdm
import torch
import ftfy
from megatron.tokenizer import build_tokenizer
from megatron.data import indexed_dataset
from threading import Semaphore
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = build_tokenizer(self.args)
def encode(self, text):
if self.args.ftfy:
text = ftfy.fix_text(text)
ids = {}
for key in self.args.jsonl_keys:
doc_ids = []
text_ids = Encoder.tokenizer.tokenize(text)
if len(text_ids) > 0:
doc_ids.append(text_ids)
if self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eod)
ids[key] = doc_ids
return ids, len(text)
def get_args(input_args=None):
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title="input data")
group.add_argument(
"--input",
type=str,
required=True,
help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
"list",
)
group.add_argument(
"--jsonl-keys",
nargs="+",
default=["text"],
help="space separate listed of keys to extract from jsonl. Default: text",
)
group.add_argument(
"--num-docs",
default=None,
help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
type=int,
)
group = parser.add_argument_group(title="tokenizer")
group.add_argument(
"--tokenizer-type",
type=str,
required=True,
choices=[
"HFGPT2Tokenizer",
"HFTokenizer",
"GPT2BPETokenizer",
"CharLevelTokenizer",
"TiktokenTokenizer",
"SPMTokenizer",
],
help="What type of tokenizer to use.",
)
group.add_argument(
"--vocab-file", type=str, default=None, help="Path to the vocab file"
)
group.add_argument(
"--merge-file",
type=str,
default=None,
help="Path to the BPE merge file (if necessary).",
)
group.add_argument(
"--append-eod",
action="store_true",
help="Append an <eod> token to the end of a document.",
)
group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
group = parser.add_argument_group(title="output data")
group.add_argument(
"--output-prefix",
type=str,
required=True,
help="Path to binary output file without suffix",
)
group.add_argument(
"--dataset-impl",
type=str,
default="mmap",
choices=["lazy", "cached", "mmap"],
help="Dataset implementation to use. Default: mmap",
)
group = parser.add_argument_group(title="runtime")
group.add_argument(
"--workers", type=int, default=1, help="Number of worker processes to launch"
)
group.add_argument(
"--log-interval",
type=int,
default=100,
help="Interval between progress updates",
)
args = parser.parse_args(input_args)
args.keep_empty = False
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.model_parallel_size = 1
return args
def yield_from_files(fnames: list, semaphore):
"""
Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
other compressed formats. Also filters out empty documents.
:param fnames: list of filenames
"""
def yielder(fname, semaphore):
for f in filter(lambda x: x, lmd.Reader(fname).stream_data()):
semaphore.acquire()
yield f
for fname in fnames:
semaphore.acquire()
yield from yielder(fname, semaphore)
def main(input_args=None):
args = get_args(input_args)
encoder = Encoder(args)
tokenizer = build_tokenizer(args)
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
# build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
# hence building up memory
semaphore = Semaphore(10000 + args.workers)
# use multiprocessing to iterate over input documents
fin = yield_from_files(args.input.split(","), semaphore)
if args.workers > 1:
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
else:
encoder.initializer()
encoded_docs = (encoder.encode(doc) for doc in fin)
# make a dataset builder for each key in args.jsonl_keys
# each key will output to a different file beginning with args.output_prefix
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.jsonl_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(
args.output_prefix, key, "document"
)
output_idx_files[key] = "{}_{}_{}.idx".format(
args.output_prefix, key, "document"
)
builders[key] = indexed_dataset.make_builder(
output_bin_files[key],
impl=args.dataset_impl,
vocab_size=tokenizer.vocab_size,
)
# actually do tokenization
proc_start = time.time()
total_bytes_processed = 0
pbar = tqdm.tqdm()
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
# release semaphore so `yield_from_files` can add another file to the buffer
semaphore.release()
# add each tokenized document / sentence
for key, sentences in doc.items():
for sentence in sentences:
builders[key].add_item(np.array(sentence, dtype=builders[key].dtype))
# separate with eos token
builders[key].end_document()
# log progress
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
pbar.set_description(
f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed :.2f} docs/s, {mbs:.2f} MB/s)."
)
if i != 0:
pbar.update(args.log_interval)
# save output file
for key in args.jsonl_keys:
builders[key].finalize(output_idx_files[key])
if __name__ == "__main__":
main()