|
--- |
|
extra_gated_heading: You need to share contact information with Alchemab to access this model |
|
extra_gated_prompt: >- |
|
|
|
|
|
|
|
FAbCon models follow a [modified Apache 2.0 license](https://huggingface.co/alchemab/fabcon-large/blob/main/LICENSE.md) |
|
extra_gated_fields: |
|
First Name: text |
|
Last Name: text |
|
Email: text |
|
Organization: text |
|
By clicking 'Submit' below, I accept the terms of the license, agree to share contact information with Alchemab: checkbox |
|
I agree to being contacted about future products, services, and/or partnership opportunities: checkbox |
|
extra_gated_description: >- |
|
The information you provide will be collected, stored, processed, and shared in accordance with the [Alchemab Privacy Notice](https://www.alchemab.com/privacy-policy/). |
|
extra_gated_button_content: Submit |
|
license: other |
|
widget: |
|
- text: "ḢQVQLE" |
|
tags: |
|
- biology |
|
--- |
|
|
|
## FAbCon-medium 🦅🧬 |
|
|
|
FAbCon is a generative, antibody-specific language model based on the [Falcon model](https://huggingface.co/tiiuae/falcon-7b). It is pre-trained using causal language modelling, |
|
and is suitable for a range of tasks. FAbCon-small, FAbCon-medium, and FAbCon-large are available for non-commercial use via a modified Apache 2.0 license. For any users seeking |
|
commercial use of our models (and license for generated antibodies from all FAbCon models), please contact us. |
|
|
|
| Model variant | Parameters | Config | License | |
|
| ------------- | ---------- | ------ | ------- | |
|
| [FAbCon-small](https://huggingface.co/alchemab/fabcon-small) | 144M | 24L, 12H, 768d | Modified Apache 2.0 | |
|
| [FAbCon-medium](https://huggingface.co/alchemab/fabcon-medium) | 297M | 28L, 16H, 1024d | Modified Apache 2.0 | |
|
| [FAbCon-large](https://huggingface.co/alchemab/fabcon-large) | 2.4B | 56L, 32H, 2048d | Modified Apache 2.0 | |
|
|
|
## Usage example - generation |
|
|
|
Generating sequences can be done using HuggingFace's built-in `model.generate` method, |
|
|
|
``` |
|
from transformers import ( |
|
PreTrainedTokenizerFast, |
|
FalconForCausalLM |
|
) |
|
|
|
>>> tokenizer = PreTrainedTokenizerFast.from_pretrained("alchemab/fabcon-medium") |
|
>>> model = FalconForCausalLM.from_pretrained("alchemab/fabcon-medium") |
|
>>> o = model.generate( |
|
tokenizer("Ḣ", return_tensors='pt')['input_ids'][:, :-1], |
|
max_new_tokens=..., |
|
top_k = ..., |
|
temperature = ... |
|
) |
|
>>> decoded_seq = tokenizer.batch_decode(o) |
|
``` |
|
|
|
## Usage example - sequence property prediction |
|
|
|
Use the `transformers` built-in SequenceClassification classes |
|
|
|
``` |
|
from transformers import ( |
|
PreTrainedTokenizerFast, |
|
FalconForSequenceClassification |
|
) |
|
|
|
>>> tokenizer = PreTrainedTokenizerFast.from_pretrained("alchemab/fabcon-medium") |
|
>>> model = FalconForSequenceClassification.from_pretrained("alchemab/fabcon-medium") |
|
>>> o = model(input_ids=tokenizer("Ḣ", return_tensors='pt')['input_ids'], |
|
attention_mask=tokenizer("Ḣ", return_tensors='pt')['attention_mask']) |
|
``` |
|
|