filtered_cause_extraction_bert_because

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4768
  • Precision: 0.25
  • Recall: 0.3878
  • F1: 0.304
  • Accuracy: 0.8087
  • Cause P: 0.25
  • Cause R: 0.3878
  • Cause F1: 0.304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Cause P Cause R Cause F1
0.7298 0.41 20 0.5714 0.0843 0.3010 0.1317 0.6191 0.0843 0.3010 0.1317
0.7298 0.82 40 0.4815 0.1528 0.3010 0.2027 0.7796 0.1528 0.3010 0.2027
0.7298 1.22 60 0.4449 0.2061 0.3776 0.2667 0.7979 0.2061 0.3776 0.2667
0.7298 1.63 80 0.4607 0.2444 0.3929 0.3014 0.8052 0.2444 0.3929 0.3014

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.1.post100
  • Datasets 2.20.0
  • Tokenizers 0.15.1
Downloads last month
35
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for alenatz/cause-bert-because

Finetuned
(2132)
this model