alenatz's picture
alenatz/relation-extraction-bert-biocause
2c8e0ed verified
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: relation-bert-biocause
    results: []

relation-bert-biocause

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2130
  • Precision: 0.1019
  • Recall: 0.5855
  • F1: 0.1737
  • Accuracy: 0.9399
  • Relation P: 0.1019
  • Relation R: 0.5855
  • Relation F1: 0.1737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Relation P Relation R Relation F1
0.7103 0.1282 20 0.3074 0.0214 0.2368 0.0392 0.8048 0.0214 0.2368 0.0392
0.7103 0.2564 40 0.2230 0.0523 0.3882 0.0922 0.8985 0.0523 0.3882 0.0922
0.7103 0.3846 60 0.2568 0.0983 0.5987 0.1688 0.9413 0.0983 0.5987 0.1688
0.7103 0.5128 80 0.2166 0.0593 0.4671 0.1053 0.9000 0.0593 0.4671 0.1053
0.7103 0.6410 100 0.2308 0.1240 0.6842 0.2099 0.9489 0.1240 0.6842 0.2099
0.7103 0.7692 120 0.2246 0.1080 0.625 0.1841 0.9435 0.1080 0.625 0.1841
0.7103 0.8974 140 0.2290 0.1196 0.6316 0.2010 0.9483 0.1196 0.6316 0.2010

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1