alex-miller's picture
End of training
bb1d6da verified
|
raw
history blame
3.3 kB
metadata
license: apache-2.0
base_model: alex-miller/ODABert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: cva-quant-weighted-classifier
    results: []

cva-quant-weighted-classifier

This model is a fine-tuned version of alex-miller/ODABert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1854
  • Accuracy: 0.9286
  • F1: 0.9231
  • Precision: 0.9231
  • Recall: 0.9231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6851 1.0 4 0.6649 0.7143 0.7333 0.6471 0.8462
0.6437 2.0 8 0.6270 0.7857 0.7857 0.7333 0.8462
0.6076 3.0 12 0.5887 0.8571 0.8462 0.8462 0.8462
0.5637 4.0 16 0.5442 0.8571 0.8462 0.8462 0.8462
0.5203 5.0 20 0.4945 0.8571 0.8462 0.8462 0.8462
0.459 6.0 24 0.4436 0.8929 0.8800 0.9167 0.8462
0.4076 7.0 28 0.3976 0.8929 0.8800 0.9167 0.8462
0.3561 8.0 32 0.3545 0.8929 0.8800 0.9167 0.8462
0.3095 9.0 36 0.3180 0.8929 0.8800 0.9167 0.8462
0.2629 10.0 40 0.2887 0.8929 0.8800 0.9167 0.8462
0.2282 11.0 44 0.2677 0.8929 0.8800 0.9167 0.8462
0.2095 12.0 48 0.2493 0.8929 0.8800 0.9167 0.8462
0.1808 13.0 52 0.2326 0.8929 0.8800 0.9167 0.8462
0.1466 14.0 56 0.2186 0.8929 0.8800 0.9167 0.8462
0.1408 15.0 60 0.2075 0.8929 0.8800 0.9167 0.8462
0.1191 16.0 64 0.1993 0.8929 0.8800 0.9167 0.8462
0.1185 17.0 68 0.1935 0.8929 0.8800 0.9167 0.8462
0.1084 18.0 72 0.1891 0.8929 0.8800 0.9167 0.8462
0.1119 19.0 76 0.1865 0.9286 0.9231 0.9231 0.9231
0.1017 20.0 80 0.1854 0.9286 0.9231 0.9231 0.9231

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1