xlm-roberta-base-ka-ner
This model is a fine-tuned version of xlm-roberta-base on the wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.2031
- Precision: 0.8506
- Recall: 0.8703
- F1: 0.8603
- Accuracy: 0.9425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5349 | 1.0 | 625 | 0.2377 | 0.8302 | 0.8218 | 0.8260 | 0.9287 |
0.2353 | 2.0 | 1250 | 0.2037 | 0.8556 | 0.8536 | 0.8546 | 0.9394 |
0.1782 | 3.0 | 1875 | 0.2031 | 0.8506 | 0.8703 | 0.8603 | 0.9425 |
Metrics per category
{'LOC': {'precision': 0.8558191459670667, 'recall': 0.9074874223142941, 'f1': 0.8808962941683425, 'number': 16895}, 'ORG': {'precision': 0.7917612346799818, 'recall': 0.7510226049515608, 'f1': 0.7708540492763231, 'number': 9290}, 'PER': {'precision': 0.8896882494004796, 'recall': 0.9157884743188076, 'f1': 0.9025497076023392, 'number': 10533}, 'overall_precision': 0.8505682876839947, 'overall_recall': 0.8702816057519472, 'overall_f1': 0.8603120330609663, 'overall_accuracy': 0.9424682155180856}
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 28
Model tree for alexamiredjibi/xlm-roberta-base-ka-ner
Base model
FacebookAI/xlm-roberta-baseDataset used to train alexamiredjibi/xlm-roberta-base-ka-ner
Evaluation results
- Precision on wikiannvalidation set self-reported0.851
- Recall on wikiannvalidation set self-reported0.870
- F1 on wikiannvalidation set self-reported0.860
- Accuracy on wikiannvalidation set self-reported0.942