File size: 2,771 Bytes
ce61a4f b74a580 ce61a4f 330ef48 ce61a4f 330ef48 ce61a4f 9a413e3 ce61a4f 330ef48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-ka-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
config: ka
split: validation
args: ka
metrics:
- name: Precision
type: precision
value: 0.8505682876839947
- name: Recall
type: recall
value: 0.8702816057519472
- name: F1
type: f1
value: 0.8603120330609663
- name: Accuracy
type: accuracy
value: 0.9424682155180856
language:
- ka
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-ka-ner
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2031
- Precision: 0.8506
- Recall: 0.8703
- F1: 0.8603
- Accuracy: 0.9425
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5349 | 1.0 | 625 | 0.2377 | 0.8302 | 0.8218 | 0.8260 | 0.9287 |
| 0.2353 | 2.0 | 1250 | 0.2037 | 0.8556 | 0.8536 | 0.8546 | 0.9394 |
| 0.1782 | 3.0 | 1875 | 0.2031 | 0.8506 | 0.8703 | 0.8603 | 0.9425 |
## Metrics per category
{'LOC': {'precision': 0.8558191459670667,
'recall': 0.9074874223142941,
'f1': 0.8808962941683425,
'number': 16895},
'ORG': {'precision': 0.7917612346799818,
'recall': 0.7510226049515608,
'f1': 0.7708540492763231,
'number': 9290},
'PER': {'precision': 0.8896882494004796,
'recall': 0.9157884743188076,
'f1': 0.9025497076023392,
'number': 10533},
'overall_precision': 0.8505682876839947,
'overall_recall': 0.8702816057519472,
'overall_f1': 0.8603120330609663,
'overall_accuracy': 0.9424682155180856}
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 |