bubbliiiing
commited on
Commit
·
00e70f4
1
Parent(s):
f2649d2
Update Readme
Browse files- README.md +3 -2
- README_en.md +3 -3
README.md
CHANGED
@@ -86,8 +86,7 @@ EasyAnimateV5.1:
|
|
86 |
<video src="https://github.com/user-attachments/assets/7f62795a-2b3b-4c14-aeb1-1230cb818067" width="100%" controls autoplay loop></video>
|
87 |
</td>
|
88 |
<td>
|
89 |
-
<video src="https://github.com/user-attachments/assets/b581df84-ade1-4605-a7a8-fd735ce3e222
|
90 |
-
" width="100%" controls autoplay loop></video>
|
91 |
</td>
|
92 |
</tr>
|
93 |
</table>
|
@@ -360,6 +359,8 @@ EasyAnimateV5.1-7B的视频大小可以由不同的GPU Memory生成,包括:
|
|
360 |
| 40GB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
361 |
| 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
362 |
|
|
|
|
|
363 |
✅ 表示它可以在"model_cpu_offload"的情况下运行,🧡代表它可以在"model_cpu_offload_and_qfloat8"的情况下运行,⭕️ 表示它可以在"sequential_cpu_offload"的情况下运行,❌ 表示它无法运行。请注意,使用sequential_cpu_offload运行会更慢。
|
364 |
|
365 |
有一些不支持torch.bfloat16的卡型,如2080ti、V100,需要将app.py、predict文件中的weight_dtype修改为torch.float16才可以运行。
|
|
|
86 |
<video src="https://github.com/user-attachments/assets/7f62795a-2b3b-4c14-aeb1-1230cb818067" width="100%" controls autoplay loop></video>
|
87 |
</td>
|
88 |
<td>
|
89 |
+
<video src="https://github.com/user-attachments/assets/b581df84-ade1-4605-a7a8-fd735ce3e222" width="100%" controls autoplay loop></video>
|
|
|
90 |
</td>
|
91 |
</tr>
|
92 |
</table>
|
|
|
359 |
| 40GB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
360 |
| 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
361 |
|
362 |
+
由于qwen2-vl-7b的float16的权重,无法在16GB显存下运行,如果您的显存是16GB,请前往[Huggingface](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8)或者[Modelscope](https://modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8)下载量化后的qwen2-vl-7b对原有的text encoder进行替换,并安装对应的依赖库(auto-gptq, optimum)。
|
363 |
+
|
364 |
✅ 表示它可以在"model_cpu_offload"的情况下运行,🧡代表它可以在"model_cpu_offload_and_qfloat8"的情况下运行,⭕️ 表示它可以在"sequential_cpu_offload"的情况下运行,❌ 表示它无法运行。请注意,使用sequential_cpu_offload运行会更慢。
|
365 |
|
366 |
有一些不支持torch.bfloat16的卡型,如2080ti、V100,需要将app.py、predict文件中的weight_dtype修改为torch.float16才可以运行。
|
README_en.md
CHANGED
@@ -56,8 +56,7 @@ EasyAnimateV5.1:
|
|
56 |
<video src="https://github.com/user-attachments/assets/7f62795a-2b3b-4c14-aeb1-1230cb818067" width="100%" controls autoplay loop></video>
|
57 |
</td>
|
58 |
<td>
|
59 |
-
<video src="https://github.com/user-attachments/assets/b581df84-ade1-4605-a7a8-fd735ce3e222
|
60 |
-
" width="100%" controls autoplay loop></video>
|
61 |
</td>
|
62 |
</tr>
|
63 |
</table>
|
@@ -325,7 +324,7 @@ The video size for EasyAnimateV5.1-12B can be generated by different GPU Memory,
|
|
325 |
| 40GB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
326 |
| 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
327 |
|
328 |
-
The video size for EasyAnimateV5-7B can be generated by different GPU Memory, including:
|
329 |
| GPU memory | 384x672x72 | 384x672x49 | 576x1008x25 | 576x1008x49 | 768x1344x25 | 768x1344x49 |
|
330 |
|------------|------------|------------|------------|------------|------------|------------|
|
331 |
| 16GB | 🧡 | 🧡 | ❌ | ❌ | ❌ | ❌ |
|
@@ -333,6 +332,7 @@ The video size for EasyAnimateV5-7B can be generated by different GPU Memory, in
|
|
333 |
| 40GB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
334 |
| 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
335 |
|
|
|
336 |
|
337 |
✅ indicates it can run under "model_cpu_offload", 🧡 represents it can run under "model_cpu_offload_and_qfloat8", ⭕️ indicates it can run under "sequential_cpu_offload", ❌ means it can't run. Please note that running with sequential_cpu_offload will be slower.
|
338 |
|
|
|
56 |
<video src="https://github.com/user-attachments/assets/7f62795a-2b3b-4c14-aeb1-1230cb818067" width="100%" controls autoplay loop></video>
|
57 |
</td>
|
58 |
<td>
|
59 |
+
<video src="https://github.com/user-attachments/assets/b581df84-ade1-4605-a7a8-fd735ce3e222" width="100%" controls autoplay loop></video>
|
|
|
60 |
</td>
|
61 |
</tr>
|
62 |
</table>
|
|
|
324 |
| 40GB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
325 |
| 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
326 |
|
327 |
+
The video size for EasyAnimateV5.1-7B can be generated by different GPU Memory, including:
|
328 |
| GPU memory | 384x672x72 | 384x672x49 | 576x1008x25 | 576x1008x49 | 768x1344x25 | 768x1344x49 |
|
329 |
|------------|------------|------------|------------|------------|------------|------------|
|
330 |
| 16GB | 🧡 | 🧡 | ❌ | ❌ | ❌ | ❌ |
|
|
|
332 |
| 40GB | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
333 |
| 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
334 |
|
335 |
+
Due to the float16 weights of qwen2-vl-7b, it cannot run on a 16GB GPU. If your GPU memory is 16GB, please visit [Huggingface](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8) or [Modelscope](https://modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8) to download the quantized version of qwen2-vl-7b to replace the original text encoder, and install the corresponding dependency libraries (auto-gptq, optimum).
|
336 |
|
337 |
✅ indicates it can run under "model_cpu_offload", 🧡 represents it can run under "model_cpu_offload_and_qfloat8", ⭕️ indicates it can run under "sequential_cpu_offload", ❌ means it can't run. Please note that running with sequential_cpu_offload will be slower.
|
338 |
|