Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2-0.5B-Instruct
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - a0caaa0cbf3148b6_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a0caaa0cbf3148b6_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 30
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 64
gradient_checkpointing: true
group_by_length: true
hub_model_id: alicegoesdown/151c116f7a
hub_repo: stevemonite
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GiB
max_steps: 500
micro_batch_size: 1
mlflow_experiment_name: /tmp/a0caaa0cbf3148b6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 1028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: 1c116f7a
warmup_raio: 0.03
warmup_ratio: 0.03
weight_decay: 0.01
xformers_attention: null

151c116f7a

This model is a fine-tuned version of unsloth/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 15
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0004 1 nan
0.0 0.0098 25 nan
0.0 0.0197 50 nan
0.0 0.0295 75 nan
0.0 0.0394 100 nan
0.0 0.0492 125 nan
0.0 0.0590 150 nan
0.0 0.0689 175 nan
0.0 0.0787 200 nan
0.0 0.0886 225 nan
0.0 0.0984 250 nan
0.0 0.1082 275 nan
0.0 0.1181 300 nan
0.0 0.1279 325 nan
0.0 0.1377 350 nan
0.0 0.1476 375 nan
0.0 0.1574 400 nan
0.0 0.1673 425 nan
0.0 0.1771 450 nan
0.0 0.1869 475 nan
0.0 0.1968 500 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for alicegoesdown/151c116f7a

Adapter
(79)
this model