SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alifaheem94/bge-m3_medical_ur_ru")
# Run inference
sentences = [
'What are the symptoms of Transient bullous dermolysis of the newborn ?',
'Transient bullous dermolysis of the newborn ke asraat kya hain?',
'کیا ہے (are) کارنٹائن-ایسیلکارنٹائن ٹرانسلوکیس کی کمی؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 450 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 450 samples:
anchor positive negative type string string string details - min: 9 tokens
- mean: 15.84 tokens
- max: 33 tokens
- min: 7 tokens
- mean: 17.07 tokens
- max: 57 tokens
- min: 7 tokens
- mean: 17.29 tokens
- max: 57 tokens
- Samples:
anchor positive negative How many people are affected by juvenile polyposis syndrome ?
Kitne log juvenile polyposis syndrome se mutasir hain?
بچوں کے Rhabdomyosarcoma کے علاج کیا ہیں؟
What are the symptoms of Epiphyseal dysplasia multiple with early-onset diabetes mellitus ?
Epiphyseal dysplasia multiple کے کیا علامات ہیں جن کے ساتھ جلدی شروع ہونے والا diabetes mellitus ہوتا ہے؟
Glioblastoma کے علامات کیا ہیں؟
What are the treatments for Systemic capillary leak syndrome ?
Systemic capillary leak syndrome کے علاج کیا ہیں؟
Myelomeningocele ke ilaj kya hain?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 25 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 25 samples:
anchor positive negative type string string string details - min: 10 tokens
- mean: 15.92 tokens
- max: 26 tokens
- min: 9 tokens
- mean: 17.0 tokens
- max: 33 tokens
- min: 10 tokens
- mean: 18.4 tokens
- max: 42 tokens
- Samples:
anchor positive negative What is (are) Causes of Diabetes ?
ذیابیطس کے (Causes) کیا ہیں؟
Alexander Disease ke liye kya research (ya clinical trials) ki ja rahi hai?
How to prevent Hypoglycemia ?
ہائپوگلیسیمیا (Hypoglycemia) کو کیسے روکا جائے؟
Lesch-Nyhan Syndrome کیا ہے؟
What is (are) Progressive Supranuclear Palsy ?
Progressive Supranuclear Palsy kya hai?
بچوں میں Chronic Diarrhea کے علامات کیا ہیں؟
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1per_device_eval_batch_size
: 1num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 1per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.2222 | 100 | 0.0069 | 0.0001 |
0.4444 | 200 | 0.0017 | 0.0002 |
0.6667 | 300 | 0.0072 | 0.0036 |
0.8889 | 400 | 0.0006 | 0.0021 |
1.1111 | 500 | 0.0045 | 0.0003 |
1.3333 | 600 | 0.0244 | 0.0041 |
1.5556 | 700 | 0.0094 | 0.0001 |
1.7778 | 800 | 0.0011 | 0.0002 |
2.0 | 900 | 0.0013 | 0.0002 |
2.2222 | 1000 | 0.0077 | 0.0007 |
2.4444 | 1100 | 0.0012 | 0.0014 |
2.6667 | 1200 | 0.0109 | 0.0000 |
2.8889 | 1300 | 0.0006 | 0.0000 |
3.1111 | 1400 | 0.0 | 0.0000 |
3.3333 | 1500 | 0.0079 | 0.0000 |
3.5556 | 1600 | 0.021 | 0.0000 |
3.7778 | 1700 | 0.001 | 0.0002 |
4.0 | 1800 | 0.0 | 0.0000 |
4.2222 | 1900 | 0.0088 | 0.0000 |
4.4444 | 2000 | 0.0 | 0.0000 |
4.6667 | 2100 | 0.0069 | 0.0000 |
4.8889 | 2200 | 0.0 | 0.0000 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.3.0
- Transformers: 4.45.2
- PyTorch: 2.2.1
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for alifaheem94/bge-m3_medical_ur_ru
Base model
BAAI/bge-m3