SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("alifaheem94/bge-m3_medical_ur_ru")
# Run inference
sentences = [
    'What are the symptoms of Transient bullous dermolysis of the newborn ?',
    'Transient bullous dermolysis of the newborn ke asraat kya hain?',
    'کیا ہے (are) کارنٹائن-ایسیلکارنٹائن ٹرانسلوکیس کی کمی؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 450 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 450 samples:
    anchor positive negative
    type string string string
    details
    • min: 9 tokens
    • mean: 15.84 tokens
    • max: 33 tokens
    • min: 7 tokens
    • mean: 17.07 tokens
    • max: 57 tokens
    • min: 7 tokens
    • mean: 17.29 tokens
    • max: 57 tokens
  • Samples:
    anchor positive negative
    How many people are affected by juvenile polyposis syndrome ? Kitne log juvenile polyposis syndrome se mutasir hain? بچوں کے Rhabdomyosarcoma کے علاج کیا ہیں؟
    What are the symptoms of Epiphyseal dysplasia multiple with early-onset diabetes mellitus ? Epiphyseal dysplasia multiple کے کیا علامات ہیں جن کے ساتھ جلدی شروع ہونے والا diabetes mellitus ہوتا ہے؟ Glioblastoma کے علامات کیا ہیں؟
    What are the treatments for Systemic capillary leak syndrome ? Systemic capillary leak syndrome کے علاج کیا ہیں؟ Myelomeningocele ke ilaj kya hain?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 25 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 25 samples:
    anchor positive negative
    type string string string
    details
    • min: 10 tokens
    • mean: 15.92 tokens
    • max: 26 tokens
    • min: 9 tokens
    • mean: 17.0 tokens
    • max: 33 tokens
    • min: 10 tokens
    • mean: 18.4 tokens
    • max: 42 tokens
  • Samples:
    anchor positive negative
    What is (are) Causes of Diabetes ? ذیابیطس کے (Causes) کیا ہیں؟ Alexander Disease ke liye kya research (ya clinical trials) ki ja rahi hai?
    How to prevent Hypoglycemia ? ہائپوگلیسیمیا (Hypoglycemia) کو کیسے روکا جائے؟ Lesch-Nyhan Syndrome کیا ہے؟
    What is (are) Progressive Supranuclear Palsy ? Progressive Supranuclear Palsy kya hai? بچوں میں Chronic Diarrhea کے علامات کیا ہیں؟
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss
0.2222 100 0.0069 0.0001
0.4444 200 0.0017 0.0002
0.6667 300 0.0072 0.0036
0.8889 400 0.0006 0.0021
1.1111 500 0.0045 0.0003
1.3333 600 0.0244 0.0041
1.5556 700 0.0094 0.0001
1.7778 800 0.0011 0.0002
2.0 900 0.0013 0.0002
2.2222 1000 0.0077 0.0007
2.4444 1100 0.0012 0.0014
2.6667 1200 0.0109 0.0000
2.8889 1300 0.0006 0.0000
3.1111 1400 0.0 0.0000
3.3333 1500 0.0079 0.0000
3.5556 1600 0.021 0.0000
3.7778 1700 0.001 0.0002
4.0 1800 0.0 0.0000
4.2222 1900 0.0088 0.0000
4.4444 2000 0.0 0.0000
4.6667 2100 0.0069 0.0000
4.8889 2200 0.0 0.0000

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.3.0
  • Transformers: 4.45.2
  • PyTorch: 2.2.1
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
8
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for alifaheem94/bge-m3_medical_ur_ru

Base model

BAAI/bge-m3
Finetuned
(202)
this model