|
--- |
|
license: other |
|
base_model: facebook/opt-350m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: opt-350m_IA3_lr5e-05_bs4_epoch20_wd0.01 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opt-350m_IA3_lr5e-05_bs4_epoch20_wd0.01 |
|
|
|
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.6235 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 4.0247 | 1.0 | 157 | 3.8361 | |
|
| 4.0183 | 2.0 | 314 | 3.8183 | |
|
| 4.0005 | 3.0 | 471 | 3.7924 | |
|
| 3.9764 | 4.0 | 628 | 3.7634 | |
|
| 3.8952 | 5.0 | 785 | 3.7394 | |
|
| 3.9008 | 6.0 | 942 | 3.7191 | |
|
| 3.9332 | 7.0 | 1099 | 3.7025 | |
|
| 3.8841 | 8.0 | 1256 | 3.6877 | |
|
| 3.8515 | 9.0 | 1413 | 3.6754 | |
|
| 3.8297 | 10.0 | 1570 | 3.6650 | |
|
| 3.785 | 11.0 | 1727 | 3.6560 | |
|
| 3.832 | 12.0 | 1884 | 3.6485 | |
|
| 3.7683 | 13.0 | 2041 | 3.6422 | |
|
| 3.8607 | 14.0 | 2198 | 3.6369 | |
|
| 3.7712 | 15.0 | 2355 | 3.6327 | |
|
| 3.7966 | 16.0 | 2512 | 3.6293 | |
|
| 3.7841 | 17.0 | 2669 | 3.6266 | |
|
| 3.8344 | 18.0 | 2826 | 3.6248 | |
|
| 3.7461 | 19.0 | 2983 | 3.6238 | |
|
| 3.8097 | 20.0 | 3140 | 3.6235 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.1+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|