allknowingroger's picture
Upload folder using huggingface_hub
4f06d5b verified
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- allknowingroger/JupiterMerge-7B-slerp
- allknowingroger/RasGullaINEX12-7B-slerp
base_model:
- allknowingroger/JupiterMerge-7B-slerp
- allknowingroger/RasGullaINEX12-7B-slerp
---
# JupiterINEX12-12B-MoE
JupiterINEX12-12B-MoE is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [allknowingroger/JupiterMerge-7B-slerp](https://huggingface.co/allknowingroger/JupiterMerge-7B-slerp)
* [allknowingroger/RasGullaINEX12-7B-slerp](https://huggingface.co/allknowingroger/RasGullaINEX12-7B-slerp)
## 🧩 Configuration
```yaml
base_model: allknowingroger/JupiterMerge-7B-slerp
experts:
- source_model: allknowingroger/JupiterMerge-7B-slerp
positive_prompts: ["why"]
- source_model: allknowingroger/RasGullaINEX12-7B-slerp
positive_prompts: ["math"]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "allknowingroger/JupiterINEX12-12B-MoE"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```