metadata
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:23863
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
SFP+ 10GBase-SR 10 Gigabit Ethernet Optics, 850nm for up to 300m
transmission on MMF
sentences:
- Software
- Data Voice or Multimedia Network Equipment or Platforms and Accessories
- >-
Components for information technology or broadcasting or
telecommunications
- source_sentence: >-
Apple Macbook Pro Retina 15.4 inch Intel Core i7 2.5GHz 16GB 512GB SSD
MJLT2TU/A
sentences:
- Consumer electronics
- Office supply
- Computer Equipment and Accessories
- source_sentence: >-
Switch and Route Processing Unit A5(Including 1*2G Memory and 1*1G CF
Card)
sentences:
- Data Voice or Multimedia Network Equipment or Platforms and Accessories
- >-
Components for information technology or broadcasting or
telecommunications
- Consumer electronics
- source_sentence: Samsung Gear VR R325
sentences:
- Computer Equipment and Accessories
- Data Voice or Multimedia Network Equipment or Platforms and Accessories
- Communications Devices and Accessories
- source_sentence: >-
SUN.Sun Fire T1000 Server, 6 core, 1.0GHz UltraSPARC T1 processor, 4GB
DDR2 memory (4 * 1GB DIMMs), 160 SATA hard disk drive.
sentences:
- Computer Equipment and Accessories
- Communications Devices and Accessories
- Domestic appliances
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: .nan
name: Pearson Manhattan
- type: spearman_manhattan
value: .nan
name: Spearman Manhattan
- type: pearson_euclidean
value: .nan
name: Pearson Euclidean
- type: spearman_euclidean
value: .nan
name: Spearman Euclidean
- type: pearson_dot
value: .nan
name: Pearson Dot
- type: spearman_dot
value: .nan
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-17.10.24-ifhavemorethan100sampleperfamily")
# Run inference
sentences = [
'SUN.Sun Fire T1000 Server, 6 core, 1.0GHz UltraSPARC T1 processor, 4GB DDR2 memory (4 * 1GB DIMMs), 160 SATA hard disk drive.',
'Computer Equipment and Accessories',
'Communications Devices and Accessories',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
pearson_manhattan | nan |
spearman_manhattan | nan |
pearson_euclidean | nan |
spearman_euclidean | nan |
pearson_dot | nan |
spearman_dot | nan |
pearson_max | nan |
spearman_max | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 23,863 training samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 3 tokens
- mean: 16.7 tokens
- max: 78 tokens
- min: 3 tokens
- mean: 7.97 tokens
- max: 12 tokens
- Samples:
sentence1 sentence2 High_Performance_DB_HPE ProLiant DL380 Gen10 8SFF
Computer Equipment and Accessories
HP PROLIANT DL160 G7 SERVER
Computer Equipment and Accessories
ZTE 24-port GE SFP Physical Line Interface Unit Z
Components for information technology or broadcasting or telecommunications
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 5,114 evaluation samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 3 tokens
- mean: 17.25 tokens
- max: 93 tokens
- min: 3 tokens
- mean: 7.83 tokens
- max: 12 tokens
- Samples:
sentence1 sentence2 Symantec Security Analytics
Computer Equipment and Accessories
RAU2 X 7/A28 HP Kit HIGH
Data Voice or Multimedia Network Equipment or Platforms and Accessories
HPE DL360 Gen9 8SFF CTO Server
Computer Equipment and Accessories
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_max |
---|---|---|---|---|
0.0670 | 100 | 2.2597 | 1.9744 | nan |
0.1340 | 200 | 1.9663 | 1.8451 | nan |
0.2011 | 300 | 1.9035 | 1.8232 | nan |
0.2681 | 400 | 1.8447 | 1.7664 | nan |
0.3351 | 500 | 1.7951 | 1.7387 | nan |
0.4021 | 600 | 1.7409 | 1.7485 | nan |
0.4692 | 700 | 1.7049 | 1.7022 | nan |
0.5362 | 800 | 1.7058 | 1.6885 | nan |
0.6032 | 900 | 1.6933 | 1.6730 | nan |
0.6702 | 1000 | 1.7053 | 1.6562 | nan |
0.7373 | 1100 | 1.6289 | 1.6613 | nan |
0.8043 | 1200 | 1.6046 | 1.6571 | nan |
0.8713 | 1300 | 1.6332 | 1.6420 | nan |
0.9383 | 1400 | 1.6431 | 1.6107 | nan |
1.0054 | 1500 | 1.6104 | 1.6309 | nan |
1.0724 | 1600 | 1.5444 | 1.6234 | nan |
1.1394 | 1700 | 1.4944 | 1.6043 | nan |
1.2064 | 1800 | 1.5099 | 1.6083 | nan |
1.2735 | 1900 | 1.4763 | 1.6369 | nan |
1.3405 | 2000 | 1.5351 | 1.5959 | nan |
1.4075 | 2100 | 1.4537 | 1.6378 | nan |
1.4745 | 2200 | 1.5263 | 1.5769 | nan |
1.5416 | 2300 | 1.46 | 1.5889 | nan |
1.6086 | 2400 | 1.4781 | 1.5744 | nan |
1.6756 | 2500 | 1.4932 | 1.5663 | nan |
1.7426 | 2600 | 1.4158 | 1.5585 | nan |
1.8097 | 2700 | 1.4571 | 1.5580 | nan |
1.8767 | 2800 | 1.4078 | 1.5627 | nan |
1.9437 | 2900 | 1.4205 | 1.5622 | nan |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}