File size: 5,226 Bytes
074a929
 
 
 
 
 
 
 
 
 
 
c0b9190
074a929
 
 
 
 
c0b9190
074a929
 
 
 
 
 
 
c0b9190
f998a91
c0b9190
 
f998a91
c0b9190
 
f998a91
c0b9190
 
f998a91
c0b9190
94e3d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074a929
 
 
 
 
 
 
 
 
f998a91
 
 
 
 
074a929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9367b3d
074a929
 
 
 
 
9367b3d
074a929
 
 
 
9367b3d
 
f998a91
 
 
 
 
 
 
 
 
 
074a929
 
 
 
9367b3d
074a929
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-cased
model-index:
- name: distilbert-base-cased-ner
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - type: precision
      value: 0.932077342588002
      name: Precision
    - type: recall
      value: 0.9491753618310333
      name: Recall
    - type: f1
      value: 0.940548653381139
      name: F1
    - type: accuracy
      value: 0.984782480720551
      name: Accuracy
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: test
    metrics:
    - type: accuracy
      value: 0.8975276153858275
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjA4OTdkZGZhOGVjNzUxMTExZTIxOTBhN2ExYmU0ZGE3MmFmZGYwZjhhMzExYjgwYjljMTg1YzJkMjk2NzVmYyIsInZlcnNpb24iOjF9.4QqmAwmUTNJlRnQiukdI23SNjKa6ZC9K6GBuuVuELeUueYI5R1tP58WYtNglr9BHWqhj1NuqeRNJSa7VFP0dDg
    - type: precision
      value: 0.9258126323573902
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2ZmZTAwZTBmZGNkODM2NTk3NjkyMTZmOGVhOGM0MDY1YzVlMTdkYjkwMTU3YzI4ODNhZDMyMTM5N2M4YjhjNCIsInZlcnNpb24iOjF9.ybM6lA3dtYn6sFT70ocFeAxLGoMUcXedGx2YeVz58VQt0g2WqhCsHm6MOeTH1W33zgaYF7thcEoT6zOEr8PzBw
    - type: recall
      value: 0.9132871306827602
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjM0ZTY5NTQzYWI2ZGQzOWU1YjQ1MjhjYjVjNzllYzE5MjE3MTI2ODY2NzQzOWIwMjJiODIxNTJiYWI3MDg0YyIsInZlcnNpb24iOjF9.8nEFuGWTjzFButONIeft0c9pSrdxkNTNxwlyr76tqu3B9VSRdSCswauC2d5ccTXqrNBljmMa8CixqwlVwEj2CQ
    - type: auc
      value: NaN
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWMwY2Q2MGY4ODM2NTdlYjQ0OTI3ZmYyYjYyYTk3ZmNjMTRmYTZjYWFjOTg2NGI2NGZkNGQxZmRiNGU0N2VhYyIsInZlcnNpb24iOjF9.15J6CBL2SyWfraaDRfA80qptuANH89eQzrpnYKoNLyysmblllMwJxJWzQdMEHRveLOXgpNYjdurAZSFy7p0KCA
    - type: f1
      value: 0.9195072279905185
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTZmMTgwZDc2M2ZhMWE5MjMxZDVmOWViNjI3MTM0MTJjMWE5ZTU1NDJhNjRmMTE1NmVlZGY1NmVkODBlNGZiYSIsInZlcnNpb24iOjF9.OoKpemZwjZKioOj4fTNAnJHHBBdOlTHyNIEKWTLfuHcIiqJwYZ_VQ9LyEGPrN9YsgDkM-NiIWaEKkdi4Ww15Dw
    - type: loss
      value: 0.8574212193489075
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGVhYzFhMzEzOWM4NDJmN2QwZjRmMjYxNjY1MjczNzEzZTZhYzY1YzhjMzg1MjdjODgyNjE2YTRhMzcyMzhiMiIsInZlcnNpb24iOjF9.jfXLq-DE6HVYMC43QoxmTFKmCS7uSKxJYr0lJMu8Z7dKOfv9P4Py1cJG1GWcsdlGjlfVPvGq3pZ1Ofu8uao5BA
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-cased-ner

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1088
- Precision: 0.9321
- Recall: 0.9492
- F1: 0.9405
- Accuracy: 0.9848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2147483647
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1015        | 1.0   | 1756  | 0.1001          | 0.8858    | 0.9167 | 0.9010 | 0.9740   |
| 0.049         | 2.0   | 3512  | 0.0803          | 0.8993    | 0.9273 | 0.9131 | 0.9798   |
| 0.0327        | 3.0   | 5268  | 0.0794          | 0.9199    | 0.9350 | 0.9274 | 0.9821   |
| 0.0237        | 4.0   | 7024  | 0.0880          | 0.9050    | 0.9344 | 0.9194 | 0.9813   |
| 0.0131        | 5.0   | 8780  | 0.0849          | 0.9178    | 0.9446 | 0.9310 | 0.9837   |
| 0.0073        | 6.0   | 10536 | 0.0975          | 0.9166    | 0.9446 | 0.9304 | 0.9838   |
| 0.0044        | 7.0   | 12292 | 0.0965          | 0.9267    | 0.9475 | 0.9370 | 0.9842   |
| 0.0015        | 8.0   | 14048 | 0.1075          | 0.9273    | 0.9463 | 0.9367 | 0.9843   |
| 0.0011        | 9.0   | 15804 | 0.1089          | 0.9317    | 0.9480 | 0.9398 | 0.9847   |
| 0.0006        | 10.0  | 17560 | 0.1088          | 0.9321    | 0.9492 | 0.9405 | 0.9848   |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3