File size: 5,226 Bytes
074a929 c0b9190 074a929 c0b9190 074a929 c0b9190 f998a91 c0b9190 f998a91 c0b9190 f998a91 c0b9190 f998a91 c0b9190 94e3d16 074a929 f998a91 074a929 9367b3d 074a929 9367b3d 074a929 9367b3d f998a91 074a929 9367b3d 074a929 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: distilbert-base-cased
model-index:
- name: distilbert-base-cased-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- type: precision
value: 0.932077342588002
name: Precision
- type: recall
value: 0.9491753618310333
name: Recall
- type: f1
value: 0.940548653381139
name: F1
- type: accuracy
value: 0.984782480720551
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.8975276153858275
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjA4OTdkZGZhOGVjNzUxMTExZTIxOTBhN2ExYmU0ZGE3MmFmZGYwZjhhMzExYjgwYjljMTg1YzJkMjk2NzVmYyIsInZlcnNpb24iOjF9.4QqmAwmUTNJlRnQiukdI23SNjKa6ZC9K6GBuuVuELeUueYI5R1tP58WYtNglr9BHWqhj1NuqeRNJSa7VFP0dDg
- type: precision
value: 0.9258126323573902
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2ZmZTAwZTBmZGNkODM2NTk3NjkyMTZmOGVhOGM0MDY1YzVlMTdkYjkwMTU3YzI4ODNhZDMyMTM5N2M4YjhjNCIsInZlcnNpb24iOjF9.ybM6lA3dtYn6sFT70ocFeAxLGoMUcXedGx2YeVz58VQt0g2WqhCsHm6MOeTH1W33zgaYF7thcEoT6zOEr8PzBw
- type: recall
value: 0.9132871306827602
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjM0ZTY5NTQzYWI2ZGQzOWU1YjQ1MjhjYjVjNzllYzE5MjE3MTI2ODY2NzQzOWIwMjJiODIxNTJiYWI3MDg0YyIsInZlcnNpb24iOjF9.8nEFuGWTjzFButONIeft0c9pSrdxkNTNxwlyr76tqu3B9VSRdSCswauC2d5ccTXqrNBljmMa8CixqwlVwEj2CQ
- type: auc
value: NaN
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWMwY2Q2MGY4ODM2NTdlYjQ0OTI3ZmYyYjYyYTk3ZmNjMTRmYTZjYWFjOTg2NGI2NGZkNGQxZmRiNGU0N2VhYyIsInZlcnNpb24iOjF9.15J6CBL2SyWfraaDRfA80qptuANH89eQzrpnYKoNLyysmblllMwJxJWzQdMEHRveLOXgpNYjdurAZSFy7p0KCA
- type: f1
value: 0.9195072279905185
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTZmMTgwZDc2M2ZhMWE5MjMxZDVmOWViNjI3MTM0MTJjMWE5ZTU1NDJhNjRmMTE1NmVlZGY1NmVkODBlNGZiYSIsInZlcnNpb24iOjF9.OoKpemZwjZKioOj4fTNAnJHHBBdOlTHyNIEKWTLfuHcIiqJwYZ_VQ9LyEGPrN9YsgDkM-NiIWaEKkdi4Ww15Dw
- type: loss
value: 0.8574212193489075
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGVhYzFhMzEzOWM4NDJmN2QwZjRmMjYxNjY1MjczNzEzZTZhYzY1YzhjMzg1MjdjODgyNjE2YTRhMzcyMzhiMiIsInZlcnNpb24iOjF9.jfXLq-DE6HVYMC43QoxmTFKmCS7uSKxJYr0lJMu8Z7dKOfv9P4Py1cJG1GWcsdlGjlfVPvGq3pZ1Ofu8uao5BA
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-cased-ner
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1088
- Precision: 0.9321
- Recall: 0.9492
- F1: 0.9405
- Accuracy: 0.9848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2147483647
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1015 | 1.0 | 1756 | 0.1001 | 0.8858 | 0.9167 | 0.9010 | 0.9740 |
| 0.049 | 2.0 | 3512 | 0.0803 | 0.8993 | 0.9273 | 0.9131 | 0.9798 |
| 0.0327 | 3.0 | 5268 | 0.0794 | 0.9199 | 0.9350 | 0.9274 | 0.9821 |
| 0.0237 | 4.0 | 7024 | 0.0880 | 0.9050 | 0.9344 | 0.9194 | 0.9813 |
| 0.0131 | 5.0 | 8780 | 0.0849 | 0.9178 | 0.9446 | 0.9310 | 0.9837 |
| 0.0073 | 6.0 | 10536 | 0.0975 | 0.9166 | 0.9446 | 0.9304 | 0.9838 |
| 0.0044 | 7.0 | 12292 | 0.0965 | 0.9267 | 0.9475 | 0.9370 | 0.9842 |
| 0.0015 | 8.0 | 14048 | 0.1075 | 0.9273 | 0.9463 | 0.9367 | 0.9843 |
| 0.0011 | 9.0 | 15804 | 0.1089 | 0.9317 | 0.9480 | 0.9398 | 0.9847 |
| 0.0006 | 10.0 | 17560 | 0.1088 | 0.9321 | 0.9492 | 0.9405 | 0.9848 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|