Edit model card

convnext-tiny-224-finetuned-barkley

This model is a fine-tuned version of facebook/convnext-tiny-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0128
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0
  • Top1 Accuracy: 1.0
  • Error Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Top1 Accuracy Error Rate
1.6288 1.0 38 1.6005 0.2133 0.2697 0.2043 0.2371 0.2697 0.7629
1.6059 2.0 76 1.5802 0.2384 0.2763 0.2243 0.2473 0.2763 0.7527
1.5808 3.0 114 1.5570 0.2778 0.3026 0.2595 0.2744 0.3026 0.7256
1.5555 4.0 152 1.5291 0.3831 0.375 0.3491 0.3511 0.375 0.6489
1.5232 5.0 190 1.4933 0.4252 0.4408 0.4154 0.4147 0.4408 0.5853
1.4784 6.0 228 1.4484 0.5076 0.5197 0.4926 0.4972 0.5197 0.5028
1.4242 7.0 266 1.3902 0.6857 0.6382 0.6307 0.6249 0.6382 0.3751
1.3586 8.0 304 1.3186 0.7728 0.7171 0.7166 0.7134 0.7171 0.2866
1.276 9.0 342 1.2236 0.8547 0.8026 0.8109 0.8060 0.8026 0.1940
1.1778 10.0 380 1.1122 0.8899 0.8553 0.8609 0.8601 0.8553 0.1399
1.0543 11.0 418 0.9839 0.9064 0.8947 0.8958 0.9005 0.8947 0.0995
0.921 12.0 456 0.8418 0.9541 0.9539 0.9537 0.9575 0.9539 0.0425
0.773 13.0 494 0.6935 0.9624 0.9605 0.9605 0.9652 0.9605 0.0348
0.6204 14.0 532 0.5515 0.9688 0.9671 0.9672 0.9708 0.9671 0.0292
0.4835 15.0 570 0.4146 0.9704 0.9671 0.9676 0.9697 0.9671 0.0303
0.3641 16.0 608 0.3043 0.9805 0.9803 0.9802 0.9830 0.9803 0.0170
0.2706 17.0 646 0.2247 0.9805 0.9803 0.9802 0.9830 0.9803 0.0170
0.1998 18.0 684 0.1705 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.1446 19.0 722 0.1271 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.1106 20.0 760 0.1047 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.0872 21.0 798 0.0780 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0614 22.0 836 0.0739 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.0491 23.0 874 0.0517 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0365 24.0 912 0.0401 0.9871 0.9868 0.9868 0.9878 0.9868 0.0122
0.0255 25.0 950 0.0336 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0212 26.0 988 0.0377 0.9873 0.9868 0.9868 0.9889 0.9868 0.0111
0.0175 27.0 1026 0.0195 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056
0.0125 28.0 1064 0.0214 0.9936 0.9934 0.9934 0.9933 0.9934 0.0067
0.0155 29.0 1102 0.0128 1.0 1.0 1.0 1.0 1.0 0.0
0.0104 30.0 1140 0.0159 0.9937 0.9934 0.9934 0.9944 0.9934 0.0056

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
27.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alyzbane/convnext-tiny-224-finetuned-barkley

Finetuned
(35)
this model