File size: 2,479 Bytes
214357d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
base_model: distilbert-base-cased
datasets:
- conll2003
license: apache-2.0
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: distilbert-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- type: precision
value: 1.0
name: Precision
- type: recall
value: 1.0
name: Recall
- type: f1
value: 1.0
name: F1
- type: accuracy
value: 1.0
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-finetuned-ner
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0711
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Model description
The distilbert-finetuned-ner model is designed for Named Entity Recognition (NER) tasks. It is based on the DistilBERT architecture, which is a smaller, faster, and lighter version of BERT. DistilBERT retains 97% of BERT's language understanding while being 60% faster and 40% smaller, making it efficient for deployment in production systems.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.0908 | 1.0 | 1756 | 0.0887 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0467 | 2.0 | 3512 | 0.0713 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0276 | 3.0 | 5268 | 0.0711 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|