Edit model card

microsoft/layoutxlm-base finetuned on XFUND.ja

Training Results

{ "epoch": 40.0, "eval_accuracy": 0.7919082377476538, "eval_f1": 0.7886944818304172, "eval_loss": 1.6934013366699219, "eval_mem_cpu_alloc_delta": 819200, "eval_mem_cpu_peaked_delta": 0, "eval_mem_gpu_alloc_delta": 0, "eval_mem_gpu_peaked_delta": 377472512, "eval_precision": 0.7367979882648784, "eval_recall": 0.8484555984555985, "eval_runtime": 4.2599, "eval_samples": 71, "eval_samples_per_second": 16.667, "init_mem_cpu_alloc_delta": 1262002176, "init_mem_cpu_peaked_delta": 767479808, "init_mem_gpu_alloc_delta": 1481701376, "init_mem_gpu_peaked_delta": 0, "train_mem_cpu_alloc_delta": 28925952, "train_mem_cpu_peaked_delta": 1562083328, "train_mem_gpu_alloc_delta": 4458109440, "train_mem_gpu_peaked_delta": 7030973440, "train_runtime": 1135.9773, "train_samples": 194, "train_samples_per_second": 0.88 }

Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using amir22010/layoutxlm-xfund-ja 1