Edit model card

vit-base-patch16-224-in21k-emotion-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6098
  • Accuracy: 0.4375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 101010
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 2.0782 0.1938
No log 2.0 40 2.0771 0.1938
No log 3.0 60 2.0752 0.1875
No log 4.0 80 2.0725 0.1875
No log 5.0 100 2.0691 0.1812
No log 6.0 120 2.0646 0.1875
No log 7.0 140 2.0591 0.1875
No log 8.0 160 2.0517 0.2062
No log 9.0 180 2.0423 0.2062
No log 10.0 200 2.0301 0.2437
No log 11.0 220 2.0148 0.275
No log 12.0 240 1.9941 0.2687
No log 13.0 260 1.9721 0.325
No log 14.0 280 1.9464 0.3375
No log 15.0 300 1.9138 0.3312
No log 16.0 320 1.8832 0.3438
No log 17.0 340 1.8495 0.3625
No log 18.0 360 1.8153 0.3688
No log 19.0 380 1.7807 0.3625
No log 20.0 400 1.7487 0.3812
No log 21.0 420 1.7179 0.3875
No log 22.0 440 1.6897 0.4125
No log 23.0 460 1.6649 0.4062
No log 24.0 480 1.6409 0.3937
1.7227 25.0 500 1.6235 0.4188
1.7227 26.0 520 1.5990 0.4
1.7227 27.0 540 1.5816 0.425
1.7227 28.0 560 1.5664 0.45
1.7227 29.0 580 1.5497 0.4313
1.7227 30.0 600 1.5323 0.4125
1.7227 31.0 620 1.5209 0.425
1.7227 32.0 640 1.5059 0.4
1.7227 33.0 660 1.5029 0.4188
1.7227 34.0 680 1.4970 0.4313
1.7227 35.0 700 1.4944 0.4062
1.7227 36.0 720 1.4992 0.425
1.7227 37.0 740 1.5060 0.425
1.7227 38.0 760 1.4960 0.4313
1.7227 39.0 780 1.5080 0.4313
1.7227 40.0 800 1.5175 0.425
1.7227 41.0 820 1.5219 0.4188
1.7227 42.0 840 1.5273 0.4313
1.7227 43.0 860 1.5318 0.425
1.7227 44.0 880 1.5446 0.4313
1.7227 45.0 900 1.5519 0.4375
1.7227 46.0 920 1.5678 0.4188
1.7227 47.0 940 1.5747 0.4375
1.7227 48.0 960 1.5843 0.4375
1.7227 49.0 980 1.5968 0.425
0.3221 50.0 1000 1.6098 0.4375

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
13
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for andikamandalaa/vit-base-patch16-224-in21k-emotion-classification

Finetuned
(1727)
this model

Evaluation results